首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large areas of southern Australia and New Zealand are covered by mid‐Tertiary limestones formed in cool‐water, shelf environments. The generally destructive character of sea‐floor diagenesis in such settings precludes ubiquitous inorganic precipitation of carbonates, yet these limestones include occasional units with marine cements: (1) within rare in situ biomounds; (2) within some stacked, cross‐bedded sand bodies; (3) at the top of metre‐scale, subtidal, carbonate cycles; and (4) most commonly, associated with certain unconformities. The marine cements are dominated by isopachous rinds of fibrous to bladed spar, interstitial homogeneous micrite and interstitial micropeloidal micrite, often precipitated sequentially in that order. Internal sedimentation of microbioclastic micrite may occur at any stage. The paradox of marine‐cemented limestone units in an overall destructive cool‐water diagenetic regime may be explained by the precipitation of cement as intermediate Mg‐calcite from marine waters undersaturated with respect to aragonite. In some of the marine‐cemented limestones, aragonite biomoulds may include marine cement/sediment internally, suggesting that dissolution of aragonite can at times be wholly marine and not always involve meteoric influences. We suggest that marine cementation occurred preferentially, but not exclusively, during periods of relatively lowered sea level, probably glacio‐eustatically driven in the mid‐Tertiary. At times of reduced sea level, there was a relative increase in both the temperature and the carbonate saturation state of the shelf waters, and the locus of carbonate sedimentation shifted towards formerly deeper shelf sites, which now experienced increased swell wave and/or tidal energy levels, fostering sediment abrasion and reworking, reduced sedimentation rates and freer exchange of sediment pore‐waters. Energy levels were probably also enhanced by increased upwelling of cold, deep waters onto the Southern Ocean margins of the Australasian carbonate platforms, where water‐mass mixing, warming and loss of CO2 locally maintained critical levels of carbonate saturation for sea‐floor cement precipitation and promoted the phosphate‐glauconite mineralization associated with some of the marine‐cemented limestone units.  相似文献   

2.
The southern continental margin of Australia is a cool-water carbonate sedimentary province located in a high-energy, swell-dominated oceanographic setting. A vibrocore transect of 14C-dated sediments across the centre of the Eucla Shelf is the first record of Holocene shelf deposition in the Great Australian Bight. Much of the seafloor shallower than 70 m water depth, the base of wave abrasion, is bare Cenozoic limestone, in some places encrusted by (?) Late Pleistocene, coral-rich, limestone that is cemented by high-magnesium calcite (12 mole% MgCO3). The areally extensive, 100 km-wide, hard, bored substrate supports an epibiota of coralline algae, minor bryozoans and soft algae or is covered by patches of Holocene sediment up to 1.5 m thick; generally a basal bivalve lag (< 3 ka) overlain by quartzose-bioclastic palimpsest sand. This pattern of active carbonate production but little accretion on the wave-swept mid- to inner-shelf is similar to that on other parts of the southern Australian continental margin. The term shaved shelf is proposed for this style of carbonate platform, formed by alternating periods of sediment accretion, cementation and erosion.

The palimpsest sand is typically rich in bivalves, coralline algae and locally, detrital dolomite. Outer shelf Holocene sediment, below the base of wave abrasion but inboard of the shelf edge, is a metre-thick unit of fine, microbioclastic muddy sand with minor delicate bryozoans overlying a 9–13 ka rhodolith gravel. Some of this outer shelf sediment appears to have been resedimented. The shelf edge is a sandy and rocky seafloor with active bryozoan growth and sediment production.

The Holocene sediments are enriched in coralline algal particles and conspicuous large foraminifers (cf. Marginopora) and depleted in bryozoans, as compared to coeval deposits on the Lacepede and Otway shelves off southeastern Australia. These differences are interpreted to reflect warmer waters of the Leeuwin Current and prevalent downwelling in this area as opposed to the general upwelling and colder waters in the east.  相似文献   


3.
Comparison of microbially induced sedimentary structures (MISS) and stromatolitic bearing horizons from the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya, has been scrutinised to understand the formative processes and controls on MISS and stromatolites in the context of sedimentary facies and response to sea level fluctuations. MISS structures recorded are wrinkle structures, Kinneyia ripples, load casts, domal structures, sand chips, palimpsest and patchy ripples with limited desiccation cracks. Stromatolitic morphotypes recorded are solitary, branching, wavy and domal forms of stromatolites associated with ooids, peloids and fenestral laminae. MISS structures flourished within tidal flats to shallow intertidal while stromatolites mushroomed in environments ranging from tidal to deep subtidal. MISS structures were favoured by resistant substratum, low energy conditions, consistent water supply and low terrigenous input. Stromatolites boomed when the volume of carbonate accumulation exceeded siliciclastic deposition. Fluctuating environmental conditions and sediment budget controlled morphology of stromatolites. Owing to limited siliciclastic input during deposition of dolomudstones (characterizes transgressive systems tract), microbial growth was enhanced. Calcareous shales were deposited over dolomudstones which marks the maximum flooding surface (MFS) indicating the culmination of transgression. Deposition of storm-dominated sandstone-siltstone (FA1), wave-rippled sandstones (FA2), tide-dominated sandstones (FA3), heteroliths (FA4), wackestone-packestone (FA6), boundstone (FA7) and ooid-peloid grainstone (FA8) on top of the MFS reflects initiation of highstand systems tract (HST) which is mainly characterized by stromatolitic horizons, alternation of carbonates and siliciclastics with flourishing microbial activity. Eventually, increased sedimentation in upper part of Kunihar Formation marks late stage of regression.  相似文献   

4.
The dominant calcareous organisms and sediment characteristics are described for eight different physical settings on the shelf west of Scotland, each having a different depth, substrate and degree of hydrodynamic exposure.

The principal sites of carbonate production are on shallow rocky substrates where barnacles, molluscs, echinoderms and serpulids are the dominant calcareous organisms. In sheltered shallow sandy zones, molluscs, echinoderms and benthic foraminiferans are the active producers, though the sediments are commonly barnacle-rich. Where tidal currents are enhanced between islands and the waves are suppressed, calcareous red algae (Phymatolithon calcareum) and mussel shells build localised banks. In deep, open-shelf water molluscs are the major skeletal contributor to the sediment, though on rocky sea beds bryozoans, serpulids and echinoderms are important.

The major sites of deposition are where persistent hydro- (and aero-) dynamic conditions sweep together grains from active production sites (e.g., sand ribbons or beaches and dunes adjacent to shallow rocky platforms) or in sinks where the physiographic configuration favours the deposition and retention of locally produced sediment or sediment derived from suspension. The well-sorted, cross-bedded, beach and dune sands commonly contain > 75% CaCO3. In sheltered depressions, bioturbated muds accumulate with up to 30% calcite silt, which is probably the breakdown product of barnacles and benthic foraminiferans.  相似文献   


5.
《Sedimentology》2018,65(2):431-460
This study focuses on the causes, modalities and obstacles of sediment transfer in the longest cell of littoral sand drift documented on Earth so far. Sand derived from the Orange River is dragged by swell waves and persistent southerly winds to accumulate in four successive dunefields in coastal Namibia to Angola. All four dunefields are terminated by river valleys, where aeolian sand is flushed back to the ocean; and yet sediment transport continues at sea, tracing an 1800 km long submarine sand highway. Sand drift would extend northward to beyond the Congo if the shelf did not become progressively narrower in southern Angola, where drifting sand is funnelled towards oceanic depths via canyon heads connected to river mouths. Garnet–magnetite placers are widespread along this coastal stretch, indicating systematic loss of the low‐density feldspatho‐quartzose fraction to the deep ocean. More than half of Moçamedes Desert sand is derived from the Orange River, and the rest in similar proportions from the Cunene River and from the Swakop and other rivers draining the Damara Orogen in Namibia. The Orange fingerprint, characterized by basaltic rock fragments, clinopyroxene grains and bimodal zircon‐age spectra with peaks at ca 0·5 Ga and ca 1·0 Ga, is lost abruptly at Namibe, and beach sands further north have abundant feldspar, amphibole‐epidote suites and unimodal zircon‐age spectra with a peak at ca 2·0 Ga, documenting local provenance from Palaeoproterozoic basement. Along with this oblique‐rifted continental margin, beach placers are dominated by Fe–Ti–Cr oxides with more monazite than garnet and thus have a geochemical signature sharply different from beach placers found all the way along the Orange littoral cell. High‐resolution mineralogical studies allow us to trace sediment dispersal over distances of thousands of kilometres, providing essential information for the correct reconstruction of ‘source to sink’ relationships in hydrocarbon exploration and to predict the long‐term impact of man‐made infrastructures on coastal sediment budgets.  相似文献   

6.
Uplifted during the 1964 Alaskan earthquake, extensive intertidal flats around Middleton Island expose 1300 m of late Cenozoic (Early Pleistocene) Yakataga Formation glaciomarine sediments. These outcrops provide a unique window into outer shelf and upper slope strata that are otherwise buried within the south‐east Alaska continental shelf prism. The rocks consist of five principal facies in descending order of thickness: (i) extensive pebbly mudstone diamictite containing sparse marine fossils; (ii) proglacial submarine channel conglomerates; (iii) burrowed mudstones with discrete dropstone layers; (iv) boulder pavements whose upper surfaces are truncated, faceted and striated by ice; and (v) carbonates rich in molluscs, bryozoans and brachiopods. The carbonates are decimetre scale in thickness, typically channellized conglomeratic event beds interpreted as resedimented deposits on the palaeoshelf edge and upper slope. Biogenic components originated in a moderately shallow (ca 80 m), relatively sediment‐free, mesotrophic, sub‐photic setting. These components are a mixture of parautochthonous large pectenids or smaller brachiopods with locally important serpulid worm tubes and robust gastropods augmented by sand‐size bryozoan and echinoderm fragments. Ice‐rafted debris is present throughout these cold‐water carbonates that are thought to have formed during glacial periods of lowered sea‐level that allowed coastal ice margins to advance near to the shelf edge. Such carbonates were then stranded during subsequent sea‐level rise. Productivity was enabled by attenuation of terrigenous mud deposition during these cold periods via reduced sedimentation together with active wave and tidal‐current winnowing near the ice front. Redeposition was the result of intense storms and possibly tsunamis. These sub‐arctic mixed siliciclastic‐carbonate sediments are an end‐member of the Phanerozoic global carbonate depositional realm whose skeletal attributes first appeared during late Palaeozoic southern hemisphere deglaciation.  相似文献   

7.
通过野外地质剖面实测识别了额里图牧场额里图组各层岩性特征,利用马尔可夫链分析方法分析该剖面下岩段地层的沉积旋回,综合地质基础资料,进一步分析了沉积环境.结果识别出一个以砂岩-粉砂质泥岩-粉砂岩-泥岩为特征和一个以砂岩-灰岩-泥岩为特征的两个岩性旋回,分别代表浅海陆棚-深水浊积岩相序和陆棚浅海礁滩相沉积.结合剖面分别划分出陆棚、斜坡和盆地(海槽)3个相,进一步识别出潮坪滩相、滩前斜坡相、浊积滩坝相、滩相、斜坡盆地相、缓坡相、深水海槽相和礁滩相等亚相.整个剖面由两次海侵半旋回和一次完整的海侵海退旋回组成.研究认为古亚洲洋的最终闭合时限应该在额里图组时期之后.  相似文献   

8.
Extensive (ca. 50,000 km2) shallow-marine platforms (< 250 m) off northern (34°S) and southern (48°S) New Zealand, and more local areas of shelf between, are blanketed by skeletal carbonate sediments > 70% CaCO3), despite proximity to a tectonically active plate margin. In these regions the terrigenous sediment supply is presently low, and growth of epibenthos is fostered by firm substrates (rock, gravels, shells, seaweeds) and the generally energetic nature and high nutrient levels of open-shelf waters. Rapid transition into adjacent terrigenous-dominated facies is characteristic. Irrespective of water depth, the carbonates are coarse-grained and fragmental; carbonate mud is rare. Calcite dominates over aragonite. High-Mg calcite, widespread off northern New Zealand, is rare in the south. Skeletal material is dominated by bryozoans and bivalve molluscs, with significant local contributions from foraminifers, barnacles, calcareous red algae and echinoderms. The name bryomol is suggested for this distinctive temperate-region skeletal carbonate facies, which can be usefully subdivided based on dominant zoarial growth forms of the bryozoan component, known to be habitat-related. Bioerosion is an important mechanism of skeletal fragmentation and degradation. Many grains, especially aragontic bivalves, are infested by endolithic borers and have low preservation potential. Ages of skeletal material in the surficial deposits range from more than 20,000 years B.P. to modern, which is consistent with both low rates of carbonate production and sediment accumulation, and the wide range in preservation state of grains. Some data suggest that the skeletal carbonates are dispersed and mixed mainly during infrequent movement of sand ribbons, sand waves and sand sheets driven by storm-assisted tidal flows. Tracts of modern, palimpsest and relict carbonates can occur in juxtaposition.

The facies characteristics of the New Zealand shelf carbonate deposits contrast significantly with those of the classical Bahaman-type carbonate model. However, they are similar to those reported from many other mid- to high-latitude carbonate shelves, and afford good analogues for most onland occurrences of New Zealand Cenozoic limestones.  相似文献   


9.
Abstract The north-east Australian margin is the largest modern example of a tropical mixed siliciclastic/carbonate depositional system, with an outer shelf hosting the Great Barrier Reef (GBR) and an inner shelf dominated by fluvially sourced siliciclastic sediment wedges. The long-term interplay between these sediment components and sea level is recorded in the Queensland Trough, a 1–2 km deep N–S elongate basin situated between the GBR platform and the Queensland Plateau. In this paper, 154 samples from 45 surface grabs and six well-dated piston cores were analysed for total carbonate content, carbonate mineralogy and Sr concentration to establish spatial and temporal patterns of carbonate accumulation in the Queensland Trough over the last 300 kyr. Surface carbonate contents are lowest on the inner-shelf (<5%) and in the trough axis (<60%) because of siliciclastic dilution. Carbonate on the shelf is mostly Sr-rich aragonite and high-Mg calcite (HMC), whereas that in the basin is mostly low-Mg calcite. Once normalized to remove the effects of siliciclastic dilution, surface Sr-rich aragonite and HMC abundances decrease linearly to background levels ≈ 100 km seaward of the shelf edge. Core samples show that, over time, normalized aragonite and Sr abundances are greatest during periods of shelf flooding and lowest when sea level drops below the shelf edge. This is consistent with changes in the production of coral and calcareous algae, and the shedding of their debris from the shelf. Interestingly, normalized HMC concentrations on the slope peak during periods of major transgression, perhaps because of maximum off-shelf transport from inter-reef areas or intermediate water dissolution. After accounting for siliciclastic dilution, there are strong similarities in both spatial and temporal patterns of carbonate minerals between slopes and basins of the north-east Australian margin and those of pure carbonate margins such as the Bahamas. A limited set of basic processes, including the formation and breakdown of carbonate on the shelf, the transport of carbonate off the shelf and eustatic sea level, probably controls carbonate accumulation in slope and basin settings of tropical environments, irrespective of proximal siliciclastic sediment sources.  相似文献   

10.

Surficial deposits of the tidally influenced Australian shelf seas exhibit a variation in fades related to energy gradient. These deposits comprise a high energy gravelly facies, a mobile sand sheet facies and a low energy muddy sand facies. Such a facies distribution conforms generally with the existing model of continental shelf tidal sedimentation, derived for the west European tidal seas. However, the carbonate rich and mainly warm water deposits of the Australian shelf differ from the mainly quartzose and temperate cold‐water deposits of the European type case in terms of: (i) the role of seagrasses in trapping fine‐grained sediment; and (ii) the relative importance of the production of carbonate mud by mechanical erosion of carbonate grains. Seagrasses in Spencer Gulf, Gulf of St Vincent and Torres Strait are located in regions of strong tidal currents, associated with bedforms and gravel lag deposits. Thus, in the case of tropical carbonate shelves, seagrass deposits containing fine‐grained and poorly sorted sediments are located in close proximity to high energy gravel and mobile sand facies. In contrast, the European model (for temperate, siliciclastic shelves) places facies in a regional gradient with a wide separation (in the order of 50–100 km).

Of the locations reviewed, the Gulf of St Vincent, Bass Strait, southern Great Barrier Reef, Torres Strait and Gulf of Carpentaria exhibit zones of carbonate mud accumulation. The production and winnowing of carbonate mud from the mobile sand facies is a factor that must be taken into account in the assessment of a sediment budget for this facies, and which is of relatively greater importance for carbonate shelves. Insufficient data are presently available from the macrotidal North West Shelf to test the applicability of the model to this region.  相似文献   

11.
The wide Lacepede Shelf and narrow Bonney Shelf are contiguous parts of the south-eastern passive continental margin of Australia. The shelves are open, generally deeper than 40 m, covered by waters cooler than 18°C and swept by oceanic swells that move sediments to depths of 140 m. The Lacepede Shelf is proximal to the ‘delta’of the River Murray and the Coorong Lagoon. Shelf and upper slope sediments are a variable mixture of Holocene and late Pleistocene quartzose terrigenous clastic and bryozoa-dominated carbonate particles. Bryozoa grow in abundance to depths of 250 m and are conspicuous to depths of 350 m. They can be grouped into four depth-related assemblages. Coralline algae, the only calcareous phototrophs, are important sediment producers to depths of 70 m. Active benthic carbonate sediment production occurs to depths of 350 m, but carbonate sediment accumulation is reduced on the open shelf by continuous high energy conditions. The shelf is separated into five zones. The strandline is typified by accretionary sequences of steep shoreface, beach and dune carbonate/siliciclastic sediments. Similar shoreline facies of relict bivalve/limestone cobble ridges are stranded on the open shelf. The shallow shelf, c.40–70 m deep, is a wide, extremely flat plain with only subtle local relief. It is a mosaic of grainy, quartzose, palimpsest facies which reflect the complex interaction of modern bioclastic sediment production (dominated by bryozoa and molluscs), numerous highstands of sea level over the last 80 000 years, modern mixing of sediments from relatively recent highstands and local introduction of quartz-rich sediments during lowstands. The middle shelf, c.70–140 m deep, is a gentle incline with subtle relief where Holocene carbonates veneer seaward-dipping bedrock clinoforms and local lowstand beach complexes. Carbonates are mostly modern, uniform, clean, coarse grained sands dominated by a diverse suite of robust to delicate bryozoa particles produced primarily in situ but swept into subaqueous dunes. The deep shelf edge, c. 140–250 m deep, is a site of diverse and active bryozoa growth. Resulting accumulations are characteristically muddy and distinguished by large numbers of delicate, branching bryozoa. The upper slope, between 250 and 350 m depth, contains the deepest platform-related sediments, which are very muddy and contain a low diversity suite of delicate, branching cyclostome bryozoa. This study provides fundamental environmental information critical for the interpretation of Cenozoic cool water carbonates and the region is a good model for older mixed carbonate-terrigenous clastic successions which were deposited on unrimmed shelves.  相似文献   

12.
Exmouth Gulf is a major U‐shaped embayment on the northwestern coast of Western Australia, at a latitude of 22°S. Water temperatures are 18–31°C and normal oceanic salinity is maintained by strong tidal currents despite the hot, arid climate. A series of sediment grab samples were collected and analysed for particle‐size and foraminiferal diversity. Samples contained mud, quartzose fine sand and coarse carbonate sand fractions. The muddiest facies are located in the most sheltered areas of the gulf: mangrove channels, tidal flats, southwestern flanks and the deeper axial region. Quartzose fine sands probably have mixed origins which might include: southern aeolian dunes; cyclone‐related reworking of beach and near‐shore deposits; and reworked relict shelf alluvium. The shallow‐water fair‐weather wave climate may play a significant role in localised sediment dispersal and sorting along the eastern margin of the gulf. Sediment distributions within the gulf are complicated by low sedimentation rates through much of the central and western areas of the gulf, significant mixing, and possible inheritance of pre‐Holocene alluvium. The Holocene foraminiferal assemblage recorded from Exmouth Gulf is overwhelmingly dominated by benthic species: agglutinated, calcitic‐porcellaneous, and calcitic‐hyaline groups. The distribution of individual foraminiferal species shows relatively simple patterns, governed by environmental parameters. Live individuals are rare.  相似文献   

13.
14.
Peloidal crusts are significant components of Early Cretaceous (Aptian) reef carbonates in eastern Spain. The crusts form steep-sided laminated deposits on coral and other skeletal surfaces. Their microfabric consists almost entirely of silt-sized peloids in fenestral microspar matrix. This microfabric contrasts with more poorly sorted and generally finer grained detrital wackestone–packstone fabrics of the adjacent reef matrix. Scarcity of incorporated grains indicates that the crusts did not trap many particles. It is proposed that the crusts are stromatolites and that peloids and inter-peloid space were created concurrently by bacterial degradation of organic matter. As they developed, inter-peloid voids were protected from infiltration of extraneous sediment by the organic-rich exterior surface of the stromatolite. Even spacing of the peloids within microspar may reflect self-organization of bacterial colonies in the decaying organic matrix. Compressed and partly amalgamated peloids marginal to burrows in the stromatolites suggest that the peloid fabrics were initially only partially lithified. The grainstone-like peloid fabric is therefore interpreted as having formed in situ by very early diagenetic processes driven by heterotrophic bacteria.  相似文献   

15.
云南兰坪盆地三叠纪沉积作用与古地理演化   总被引:3,自引:0,他引:3       下载免费PDF全文
根据岩石沉积类型、物源供给、成因机制和沉积序列 ,结合区域地质特征 ,将兰坪盆地三叠系划分为陆相火山泥石流、河流相、三角洲相、潮坪相、浅海陆棚相、碳酸盐台地相和深水盆地相7种主要沉积类型。通过对沉积相的详细分析 ,恢复其古地理格架和面貌 ,探讨岩相古地理的变迁历史 ,从而表明三叠纪早期到晚期 ,其古地理经历了陆相环境→碎屑海盆→碳酸盐海盆到碎屑海盆的转换 ,即两次海侵 海退旋回。早期的海域分布范围较小 ,晚期的海域分布范围较宽 ,并成为统一的海盆。  相似文献   

16.
The Rottnest Shelf is a narrow, wave-dominated open shelf on the passive continental margin of southwest Australia, adjacent to a hinterland of low relief and sluggish drainage. High physical energy, low nutrients in cool subtropical waters, and rapid postglacial transgression have limited carbonate productivity, restricted grain types, and reworked the transgressed surface to form only a thin ( < 1 m) blanket of carbonate and relict sediment, with little terrigenous influx. Subaerial weathering of the shelf during Late Pleistocene emergence was followed by postglacial drowning, erosional shoreface retreat, and generation of a transgressive lag deposit. Establishment of the warm temperate biota, dominated by bryozoans and calcareous red algae, resulted in bioerosion of the shelf disconformity surface and generation of hardground veneers and thin skeletal carbonate sheets. Linear topographic ridges of Pleistocene limestone partition the shelf into systems with varying physical energy, biota and sediment supply. The Holocene sediments are a shallowing-upward coastal sequence; wave-ripple cross-stratified grainstone (Inner Shelf); and bioturbated bryozoan grainstone to skeletal wackestone (Outer Shelf to Upper Continental Slope), characterised by seaward fining and increasing percentages of planktic carbonate sediment.

Given sufficient time, the Rottnest Shelf could recover from drowning, and form blanket-like skeletal carbonates. Thin ( < 1 m) lags overlying disconformities, which underlie shallowing-upward coastal and shelf sediments a few metres thick, will be generated by glacio-eustatic cycles of sedimentation (105 y duration). Thick (several tens of metres) sediment bodies, composed of wave-rippled to bioturbated skeletal carbonate sediment with a temperate biota, will be formed during longer term (1–10 My) sedimentation cycles. Such cycles have characterised passive margins during the Cenozoic. The Rottnest Shelf thus provides a facies model for temperate shelf sedimentation along passive continental margins.  相似文献   


17.
The continental shelf of the State of Rio Grande do Norte, Brazil, is an open shelf area located 5°S and 35°W. It is influenced by strong oceanic and wind-driven currents, fair weather, 1·5-m-high waves and a mesotidal regime. This work focuses on the character and the controls on the development of suites of carbonate and siliciclastic bedforms, based on Landsat TM image analysis and extensive ground-truth (diving) investigations. Large-scale bedforms consist of: (i) bioclastic (mainly coralline algae and Halimeda) sand ribbons (5–10 km long, 50–600 m wide) parallel to the shoreline; and (ii) very large transverse siliciclastic dunes (3·4 km long on average, 840 m spacing and 3–8 m high), with troughs that grade rapidly into carbonate sands and gravels. Wave ripples are superposed on all large-scale bedforms, and indicate an onshore shelf sediment transport normal to the main sediment transport direction. The occurrence of these large-scale bedforms is primarily determined by the north-westerly flowing residual oceanic and tidal currents, resulting mainly in coast-parallel transport. Models of shelf bedform formation predict sand ribbons to occur in higher energy settings rather than in large dunes. However, in the study area, sand ribbons occur in an area of coarse, low-density and easily transportable bioclastic sands and gravels compared with the very large transverse dunes in an offshore area that is composed of denser medium-grained siliciclastic sands. It suggests that the availability of different sediment types is likely to exert an influence on the nature of the bedforms generated. The offshore sand supply is time limited and originates from sea floor erosion of sandstones of former sea-level lowstands. The trough areas of both sand ribbons and very large transverse dunes comprise coarse calcareous algal gravels that support benthic communities of variable maturity. Diverse mature communities result in sediment stabilization through branching algal growth and binding that is thought to modify the morphology of dunes and sand ribbons. The occurrence and the nature of the bedforms is controlled by their hydrodynamic setting, by grain composition that reflects the geological history of the area and by the carbonate-producing benthic marine communities that inhabit the trough areas.  相似文献   

18.
On the southeast Australian continental margin, mixed siliciclastic and temperate carbonate sediments are presently forming along the narrow 20–35 km‐wide northern New South Wales shelf over an area of 4960 km2. Here, year‐round, highly energetic waves rework inner and mid‐shelf clastic sediments by northward longshore currents or waning storm flows. The strong East Australian Current flows south, sweeping clastic and outer shelf biogenic sands and gravels. Quaternary siliciclastic inner shelf cores consist of fine to medium, lower shoreface sand and graded storm beds of fine to coarse sand. Physically abraded, disarticulated molluscs such as Donacidae and Glycymeridae form isolated gravel lags. Highstand inner shelf clastics accumulate at 0.53 m/103 y in less than 50 m water depth. Clastic mid‐shelf cores contain well‐sorted, winnowed, medium shoreface sands, with a fine sand component. Fine sand and mud in this area is discharged mainly from New South Wales’ largest river, the Clarence. The seaward jutting of Byron Bay results in weakened East Australia Current flows through the mid‐shelf from Ballina to Yamba allowing the fine sediments to accumulate. Quaternary carbonate outer shelf cores have uniform and graded beds forming from the East Australian Current and are also influenced by less frequent storm energy. Modern clastic‐starved outer shelf hardgrounds are cemented by coralline algae and encrusting bryozoans. Clay‐sized particles are dominantly high‐Mg calcite with minor aragonite and smectite/kaolinite. Carbonate sands are rich in bryozoan fragments and sponge spicules. Distinctive (gravel‐sized) molluscs form isolated shells or shell lag deposits comprising Limopsidae and Pectinidae. The upper slope sediments are the only significant accumulation of surficial mud on the margin (18–36 wt%), filling the interstices of poorly sorted, biogenic gravels. Pectinid molluscs form a basal gravel lag. During highstand the outer shelf accumulates sediment at 0.40 m/103 y, with the upper slope accumulating a lower 0.23 m/103 y since transgression. Transgression produced a diachronous (14–10 ka) wave‐ravinement surface in all cores. Relict marine hardgrounds overlie the wave‐ravinement surface and are cemented by inorganic calcite from the shallow and warm East Australian Current. Transgressive estuarine deposits, oxygen isotope Stage 3–5 barriers or shallow bedrock underlie the wave‐ravinement surface on the inner and mid shelf. Northern New South Wales is an example of a low accommodation, wave‐ and oceanic current‐dominated margin that has produced mixed siliciclastic‐carbonate facies. Shelf ridge features that characterise many storm‐dominated margins are absent.  相似文献   

19.
陈方 《第四纪研究》1997,17(4):367-375
针对目前对大陆架砂成因问题的争议,本文从海陆过渡带动力关联的统一的环境体系,选取环境相关的海岸与大陆架砂质沉积做对比分析,获知东海大陆架砂的沉积特征和形成环境不具备高度的均一性,因而不是统一的大规模风成堆积,它们基本上均属于河口海岸-浅海环境下的产物。据大陆架砂的沉积特征以及当代关于沙漠化概念的内涵,质疑东海大陆架"沙漠化"的观点。  相似文献   

20.
A review of the origin and setting of tepees and their associated fabrics   总被引:3,自引:0,他引:3  
Carbonate hardgrounds often occur at the surface of shallow subtidal to supratidal, lacustrine, and subaerial carbonate shelf sediments. These are commonly disrupted and brecciated when the surface area of these crusts increases. In the subtidal environment, megapolygons form when cementation of the matrix causes the surface area of the hardgrounds to expand. Similar megapolygons form in the supratidal, lacustrine and subaerial settings when repeated incremental fracturing and fracture fill by sediment and/or cement also causes the area of the hardgrounds to expand. The arched up antiform margins of expansion megapolygons are known as tepees. The types of tepees found in the geological record include: (1) Submarine tepees which form in shallow carbonate-saturated waters where fractured and bedded marine grainstones are bound by isopachous marine-phreatic acicular and micritic cements. The surfaces of these brecciated crusts have undergone diagenesis and are bored. Unlike tepees listed below they contain no vadose pisolites or gravity cements; (2) Peritidal and lacustrine tepees are formed of crusts characterized by fenestral. pisolitic and laminar algal fabrics. This similarity in fabric makes these tepees of different origins difficult to separate. Peritidal tepees occur where the marine phreatic lens is close to the sediment surface and the climate is tropical. They are associated with fractured and bedded tidal flat carbonates. Their fracture fills contain geopetal asymmetric travertines of marine-vadose origin and/or marine phreatic travertines and/or Terra rossa sediments. The senile form of these peritidal tepees are cut by labyrinthic dissolution cavities filled by the same material. Lacustrine tepees form in the margins of shallow salinas where periodic groundwater resurgence is common. They include groundwater tepees which form over evaporitic ‘boxwork’ carbonates, and extrusion tepees which also form where periodic groundwater resurgence occurs at the margins of shallow salinas, but the dominant sediment type is carbonate mud. These latter tepee crusts are coated and crosscut by laminated micrite; the laminae extend from the fractures downward into the underlying dolomitic micrite below the crust. Both peritidal and lacustrine tepees form where crusts experience alternating phreatic and vadose conditions, in time intervals of days to years. Cement morphologies reflect this and the crusts often contain gravitational, meniscus vadose cements as well as phreatic isopachous cement rinds. (3) Caliche tepees which are developed within soil profiles in a continental setting. They are formed by laminar crusts which contain pisolites, and fractures filled by micritic laminae, microspar, spar and Terra rossa. Most of the cements are gravitational and/or meniscoid. In ancient carbonates, when their cementation and diagenetic fabric can be interpreted, tepee structures can be used as environmental indicators. They can also be used to trace the evolution of the depositional and hydrological setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号