首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the summer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipitation in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the frozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer precipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence causing more summer precipitation in northern China but less in southern China.  相似文献   

2.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。  相似文献   

3.
The distribution of winter-spring snow cover over the Tibetan Plateau(TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley(MLYRV) during 2003–2013 have been investigated with the moderate-resolution imaging spectrometer(MODIS) Terra data(MOD10A2) and precipitation observations. Results show that snow cover percentage(SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency(SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003–2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. The multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning, development and cessation of the rain belt in eastern China.  相似文献   

4.
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow water equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud free snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP.  相似文献   

5.
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow wa- ter equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud flee snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP.  相似文献   

6.
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961–2006. We used monthly precipitation and temperature data from 160 stations in China for 1951–2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer precipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.  相似文献   

7.
青藏高原降水季节分配的空间变化特征   总被引:2,自引:2,他引:0  
朱艳欣  桑燕芳 《地理科学进展》2018,37(11):1533-1544
青藏高原是全球气候变化影响的敏感区域。在全球气候变暖的背景下,其水文气候过程发生了显著的变化,直接影响到区域水资源演化。然而,目前对该区域水文气候过程的时空演变规律仍认识不足。本文以青藏高原气象站点降水观测数据为基准,结合水汽通量资料,对13种不同源降水数据集质量进行对比分析;并选用质量较好的IGSNRR数据集识别了青藏高原降水季节分配特征的空间分布格局。结果表明,青藏高原东南、西南以及西北边缘地区降水集中度和集中期较小,夏季降水占全年降水比例不足50%;随着逐渐向高原腹地推进,降水集中度和集中期逐渐增大,雨季逐渐缩短且推迟,雨季降水占全年降水比例逐渐增大。降水季节分配的空间分布格局与水汽运移方向保持一致,即主要是由西风和印度洋季风的影响所致。基于此,识别出西风的影响区域主要位于高原35°N以北,印度洋季风的影响区域主要位于高原约30°N以南,而高原中部(30°N~35°N)降水受到西风和印度洋季风的共同影响。该结果有助于进一步理解和认识青藏高原水文气候过程空间差异性。  相似文献   

8.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

9.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

10.
By using the observed monthly mean temperature and humidity datasets of 14 radiosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau(TP),the relationship between the atmospheric water vapor(WV) and precipitation in summer and the precipitation conversion efficiency(PEC) over the TP are analyzed.The results are obtained as follows.(1) The summer WV decreases with increasing altitude,with the largest value area observed in the northeastern part of the TP,and the second largest value area in the southeastern part of the TP,while the northwestern part is the lowest value area.The summer precipitation decreases from southeast to northwest.(2) The summer WV presents two main patterns based on the EOF analysis:the whole region consistent-type and the north-south opposite-type.The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains.(3) The summer precipitation is more(less) in the southern(northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south,and vice versa.(4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer,which is obviously bigger in the southern TP than that in the northern TP.  相似文献   

11.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

12.
青藏高原近40年来的降水变化特征   总被引:21,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   

13.
近50a青藏高原东部夏半年强降水事件的气候特征   总被引:1,自引:1,他引:0  
基于青藏高原东部47个站点1963-2012年的5~9月逐日降水资料,分析了近50 a该区夏半年强降水的时空分布特征和相对强度。结果表明:青藏高原东部夏半年强降水事件在7月出现的频次最多,以持续1 d的单站暴雨为主;强降水量和频次在近50 a呈弱增长趋势,其存在准12 a的年代际震荡,且在1978年之后,强降水量同时存在大致准3 a的演变周期,在各自然分带强降水量和频次的变化趋势存在差异;夏半年强降水量和频次呈现出自东南向西北阶梯性递减的分布特征;青藏高原东部夏半年强降水的相对强度与强降水量呈反向特征,其中以柴达木地区相对强度为最大,藏东川西区为最少;各自然分带的强降水量和频次与夏半年降水量有很好的相关关系,而强降水的相对强度与夏半年降水量表现出不同的正负相关性。  相似文献   

14.
青藏高原对全球气候研究具有重要意义,而降水数据对水文、气象和生态等领域的研究也至关重要,且随着研究内容和尺度的变化,对高时空分辨率的历史降水数据的需求越发迫切。本文基于TRMM 3B43降水数据,采用随机森林算法,引入归一化植被指数(AVHRR NDVI)、高程(SRTM DEM)、坡度、坡向、经度、纬度6个地理因子,建立历史降水重建模型,获得1982-1997年分辨率为0.0833°的青藏高原年降水数据,然后根据比例系数法计算出月降水数据。为提高精度,利用站点数据对月降水数据进行校正。结果表明,该方法能简单有效地获得高时空分辨率的历史降水数据,决定系数R2大部分在0.4~0.9之间,平均值为0.6767,其中夏季效果最好,冬季效果最差;均方根误差RMSE和平均绝对误差MAE均在50 mm以下,RMSE均值为22.66 mm,MAE均值为15.97 mm;偏差Bias较小,基本在0.0~0.1之间。  相似文献   

15.
By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China-Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s.  相似文献   

16.
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather observation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of "weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from April to May. At those times the temperature is too high for snow cover formation and only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations in the northeast region of the Tibetan Plateau, by the Mann-Kendall test. The results show significantly fewer days of snow cover and shorter snow durations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.  相似文献   

17.
The contents and distribution characteristics of ions, n-alkanes, and polycyclic aromatic hydrocarbons in snow pits on the Yuzhufeng (YZF) Glacier and the Xiao Dongkemadi (XDKMD) Glacier are studied. Parameter characteristics and correlation coefficients between ions and two organic compounds are used to explore the possible sources of these chemical compositions. The results indicated that both glaciers are influenced by west wind circulation, but the contents of ions, n-alkanes, and polycyclic aromatic hydrocarbons in the YZF Glacier are higher than in the XDKMD Glacier because of differences in geographical position. The ratios of ΣnC21/ΣnC22+ and CPI values (CPI: carbon preference index) indicate that the n-alkanes from natural sources in these two glaciers are mainly derived from higher plants, whereas the contribution from lower organisms was small, also, n-alkanes from anthropogenic sources in the YZF Glacier are higher than in the XDKMD Glacier. The ratios of LPAHs/HPAHs and (Fly+Pyr)/(BghiP+INP) indicate that the polycyclic aromatic hydrocarbons in these two glaciers are mainly derived from low temperature combustion of coal and biomass, and, in the XDKMD Glacier, partially from the vehicle exhaust.  相似文献   

18.
论青藏高原范围与面积   总被引:80,自引:4,他引:80  
长期以来 ,种种因素导致学者们对青藏高原确切范围的认识和理解存在差异。根据青藏高原相关领域研究的新成果和多年野外实践 ,从地理学角度 ,充分讨论了确定青藏高原范围和界线的原则与涉及的问题 ,结合信息技术方法对青藏高原范围与界线位置进行了精确的定位和定量分析。得出 :青藏高原在中国境内部分西起帕米尔高原 ,东至横断山脉 ,横跨 31个经度 ,东西长约 2 94 5km ;南自喜马拉雅山脉南缘 ,北迄昆仑山 -祁连山北侧 ,纵贯约 13个纬度 ,南北宽达 15 32km ;范围为 2 6°0 0′12″N~ 39°4 6′5 0″N ,73°18′5 2″E~ 10 4°4 6′5 9″E ,面积为 2 5 72 4× 10 3km2 ,占我国陆地总面积的 2 6 8%。  相似文献   

19.
The daily snow cover data from 232 meteorological stations to the west of 105°E in China for the period 1951–2004 were used to classify the snow cover and analyze decadal variations of snow cover types in western China, and comparison was made between the observational data and those retrieved from passive microwave remote sensing data (SMMR and SSM/I) in 1980–2004. The results show that stable snow-covered areas included northern Xinjiang, the Tianshan Mountains, and the eastern Tibetan Plateau with more than 60 snow cover days; no snow cover was found in the center of the southern Xinjiang Basin, the Sichuan Basin, and southern Yunnan. In addition to the above-mentioned, there were unstable snow-covered areas in western China. Furthermore, the snow cover types in northern Xinjiang, the Tianshan Mountains, the Hexi Corridor, and the vast areas from Chengdu to Kunming were unchanged. In the 1980s, the south-north dividing line between the major snow-covered area and snow-free area advanced to its most southern position. The snow cover days calculated from satellite remote sensing were generally longer than those from observational data in western China, mainly in the higher-altitude mountains, the Hexi Corridor, and the western Sichuan Plateau.  相似文献   

20.
The spatial distribution of snow cover on the central Arctic sea ice is investigated here based on the observations made during the Third Chinese Arctic Expedition. Six types of snow were observed during the expedition: new/recent snow, melt-freeze crust, icy layer, depth hoar, coarse-grained, and chains of depth hoar. Across most measurement areas, the snow surface was covered by a melt-freeze crust 2-3 cm thick, which was produced by alternate strong solar radiation and the sharp temperature decrease over the summer Arctic Ocean. There was an intermittent layer of snow and ice at the base of the snow pack. The mean bulk density of the snow was 304.01±29.00 kg/m3 along the expedition line, and the surface values were generally smaller than those of the subsurface, confirming the principle of snow densification. In addition, the thicknesses and water equivalents of the new/recent and total-layer snow showed a decreasing trend with latitude, suggesting that the amount of snow cover and its spatial variations were mainly determined by precipitation. Snow temperature also presented significant variations in the vertical profile, and ablation and evaporation were not the primary factors in the snow assessment in late summer. The mean temperature of the surface snow was 2.01±0.96°C, which was much higher than that observed in theinterface of snow and sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号