首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
研究了磁场对奇异星模型中夸克直接Urca过程的中微子能量损失率的影响,首先改进了弱场条件下的近似计算方法,这一方法可以推广到其他弱作用过程.在甚强磁场下,严格地计算Urca过程的中微子能量损失率,结果显示辐射率强烈地依赖于磁场,与磁场的二次方成正比,更重要的是对温度的依赖关系不同于弱场及没有磁场时的情形.  相似文献   

2.
米波窄带快频漂射电爆发—“Blips”的观测和证认   总被引:3,自引:0,他引:3  
用云南天台高时间分辨率(10ms)高频率分辨率(0.5MHz)的射电频谱仪观测分析证认了米波窄带短持续时间快频漂爆发的存在。这种漂发既不同于经典的Ⅲ型爆发,也不同于spike和Ⅰ型爆发,是一种新的米波爆发型别。它的特性与分米波的“blips“相近。  相似文献   

3.
用云南天文台高时间分辨率(10ms)高频率分辨率(0.5MHz)的射电频谱仪观测分析证认了米波窄带短持续时间快频漂爆发的存在.这种爆发既不同于经典的III型爆发,也不同于spike和I型爆发,是一种新的米波爆发型别.它的特性与分米波的“blips”相近.  相似文献   

4.
运动学统计定轨方法不同于常规动力学统计定轨方法和几何法,既不需要建立飞行器的动力学模型,又可以利用整个弧段的测量信息进行统计计算,所以采用运动学统计定轨的方法描述飞行轨迹特别适用于嫦娥二期的动力落月过程。对嫦娥一号(CE-1)落月过程,采用运动学统计定轨方法,联合USB和VLBI数据进行轨道计算并确定CE-1的落月轨迹以及撞月点的位置,将所得结果与动力学统计定轨结果进行比较。计算表明,运动学统计定轨方法精度可以满足工程要求,可以为探月工程二期软着陆阶段的导航提供一种较为可行的定轨方法。  相似文献   

5.
通过数值模拟相互作用星素(包括靶星系和入侵星系)的碰撞,研究环星系的形成。由于采用旋涡结构作为靶盘试验星分布函数,不同于Toomre采用一系列同心圆作为试验星的分布函数,模拟得到环的结构比Toomre的模拟更接近于实际环星系。  相似文献   

6.
本文计算了吸积盘光学厚的内区向光学薄的外区发射的辐射谱,在中介频谱区辐射谱不同于谱指数为1/3的幂律谱,所得结果对更精细的研究吸积盘的连续谱、发射线以及自辐照模型可能有应用的前景。  相似文献   

7.
在浑天说千余年的发展过程中,浑天家以人(观察者)为中心对日月星辰的周日(每天)和周年(每年)视运动规律进行了日益完善的描绘和解释。早在战国年代,中国古代哲学家慎到在《慎子》一书中言:"天体如弹丸,其势斜倚。"认为天是一个整球体,不同于盖天说的天如半球形的圆盖。这只是处于萌芽状态的浑天说,但却道出了浑天说与盖天说的最重要区别。盖天说认为半球形的天总是盖在大地之上,永远不会没于地下,而浑天说的天则是球形的。地在天中,天球的一半在地上,一半在地下,日月星辰都处在天球上,可以随着天球的旋转而东升西落。  相似文献   

8.
时间尺度的分域递推模型   总被引:1,自引:0,他引:1  
林熙政  吴振森 《天文学报》1998,39(3):313-319
建立时间尺度是时间测量的目的之一.实时原子时则要求对时间尺度进行必要的预测.小波分析是近年来迅速发展起来的一门学科,它可以对信号在不同的分辨率下进行分析,凡是传统的Fourier分析可以应用的地方,小波分析都可以得到应用.基于小波分析建立了一种时间尺度分域递推模型,这种方法既不同于ARMA(p,q)模型,又有别于卡尔曼滤波方法.ARMA模型要求过程是平稳随机的,而卡尔曼滤波方法虽然不要求过程是平稳的,但它预测的精度有限.分城递推模型将信号在不同的频率尺度进行正交分解,在各个尺度上对小波变换系数进行建模.最后根据陕西天文台守时实验室的实测数据,验证了分域递推模型,ARMA模型一步预测误差10ns,而分域递推模型五步预测误差平均为4.5ns.结果表明这种方法简单而切实可行,分域递推模型的预测精度优于其它方法.  相似文献   

9.
通过数值模拟相互作用星系(包括靶星系和入侵星系)的碰撞,研究环星系的形成.由于采用旋涡结构作为靶盘试验星分布函数,不同于Toomre采用一系列同心圆作为试验星的分布函数,模拟得到环的结构比Toomre的模拟更接近于实际环星系.  相似文献   

10.
宇宙信息     
宇宙信息还远的星系会并最近,天文学家对一个遥远星系团进行了研究,观测结果支持这样一个观点:宇宙和在其年龄只有现在一半的时候相比很有一些不同。本世纪70年代和80年代,天文学家发现了一些高红移的星系团,它们包含的混合垦系不同于银河系附近的星系。本星系团...  相似文献   

11.
肖看  汪定雄  雷卫华 《天文学报》2002,43(2):178-188
采用等效电路模型讨论了两种不同类型的磁场对黑洞的旋转能量和角动量的提取机制;Blandford-Znajek(BZ)过程和磁耦合过程,在研究磁化吸积盘中心黑洞自转参量演化特征的基础上,详细比较了纯吸积过程,BZ过程和磁耦合过程对黑洞吸积盘放能效率的贡献,结果表明,磁耦合过程是提取黑洞旋转能量重要的新机制,其放能效率与BZ过程几乎相等,在黑洞自转不是特别大的情况,纯吸积过程的放能效率高于BZ过程和磁耦合过程的放能效率,但是当黑洞自转接近极端Kerr黑洞的自转状态时,放能效率主要由BZ过程和磁耦合过程贡献。  相似文献   

12.
We present a new model of dissipative energy fluid without appearance of horizon. The interior matter fluid is shear-free isotropic spherically symmetric and undergoing radial heat flow. The interior metric is matched with Vaidya exterior metric over the boundary. The model obeyed all the relevant physical and thermodynamic conditions. In this model, the collapse begins at infinite past with both infinite mass and radius and contracts to a point as time tends to zero without forming an event horizon.  相似文献   

13.
一个太阳耀斑约含数千个微耀斑[1],每个微耀斑以热的,低频波和加速粒子的形式释放能量。耀斑期间大部分能量的释放是通过电子加速转移的结果,然而电子加速是在耀斑前相开始,并在整个耀斑持续期间继续保持。在耀斑发展的不同相期间伴有各种各样的射电辐射现象(及其它波段共生现象),多波段射电观测和比较可以给出有关电子加速过程和耀斑自身发展的重要信息,尤其可检测加速开始的时间和频率部位(目前仍为太阳物理的前沿)。微耀斑能量的瞬时释放可能是引起不同类型快速精细结构的原因,射电毫秒级尖峰辐射是起因于连续能量释放的证据,其辐射源位于或靠近能量释放区[2],公认射电辐射的快速结构是日冕电子束的特征信号[3,4],所以今后使用高时间和高频率分辨率的宽带频谱仪同时观测可详细地探测加速过程,从而对预耀斑的加热和初始能量释放,耀斑的逐步建立和演化都具有重要意义。本文介绍几个典型事件,包括射电尖峰脉冲辐射,类尖峰辐射和短时标漂移结构  相似文献   

14.
On the basis of the equivalent circuit model, we investigate two different mechanisms of extracting energy of rotation and angular momentum from a black hole by magnetic field, namely, the Blandford-Znajek (BZ) process and the magnetic coupling (MC) process. The contributions to the efficiency of energy release via pure accretion process, BZ process and MC process are compared in detail by studying the evolutionary characteristics of the spin parameter of the black hole at the center of the magnetized accretion disk. It is shown that the MC process is an important new mechanism of extracting energy from the rotating black hole and its efficiency of energy release is almost as high as that of the BZ process. The efficiency of energy release via pure accretion process is higher than those of BZ process and magnetic coupling process. However, when the rotation of a black hole approaches that of an extreme Kerr black hole,the efficiency of energy release is mainly due to the contributions of BZ process and MC process.  相似文献   

15.
16.
Four situations are shown where the Schwarzschild metric cannot be used or is subject to unsurmountable problems. The first is the question of a metric useful for PPN-formalism checking different gravitational theories. The second problem occurs in connection with Mach's principle, when the flatness of the spacetime inside a massive hollow sphere is a generally accepted solution. The metrical discontinuity on the same spherical shell is a third problem. The fourth one is the anisotropy of the mass-energy of a test particle in the gravitational field. Three principles for solution are proposed:
  1. The space is not dilated, but rather contracted, in the gravitational field; then the measurement-rods are shorter and measured distances have greater magnitudes.
  2. The potential energy is to be related to a potential level where a stationary observer is placed and the general relativistic potential must be used.
  3. A new metric must be introduced which is distinct from the Schwarzschild metric, so that the space in the gravitational field is warped isotropically.
Then the problems stated are shown to be easily solvable.  相似文献   

17.
Two definitions of gravitational energy, Einstein's pseudo-tensor expression of energy in curved space-time and Lynden-Bell and Katz's (LBK) definition, are shown to give equivalent results, as applied to spherically-symetric static systems in the presence of arbitary sources. The conjectured expression for energy density of field plus matter for general static space times, given by Katz, Lynden-Bell, and Israel (KLBI), is applied to a system with internal and external Schwarzschild metric, and also to a vacuum dominated space-time with the De Sitter metric. The physical contents of the KLBI-expression is discussed by analyzing the Newtonian limit in a space filled with matter.  相似文献   

18.
We analyze the behavior of the scalar field as dark energy of the Universe in a static world of galaxies and clusters of galaxies. We find the analytical solutions of evolution equations of the density and velocity perturbations of dark matter and dark energy, which interact only gravitationally, along with the perturbations of metric in a static world with background Minkowski metric. It was shown that quintessential and phantom dark energy in the static world of galaxies and clusters of galaxies is gravitationally stable and can only oscillate by the influence of self-gravity. In the gravitational field of dark matter perturbations, it is able to condense monotonically, but the amplitude of density and velocity perturbations on all scales remains small. It was also illustrated that the “accretion” of phantom dark energy in the region of dark matter overdensities causes formation of dark energy underdensities-the regions with negative amplitude of density perturbations of dark energy.  相似文献   

19.
A new solution of Einstein-Maxwell field equations is presented. The material content of the field described by this solution is a perfect fluid plus sourceless electromagnetic fields. The metric of the solution is explicitly written. This metric is examined as a possible representation of Kerr-Newman metric embedded in Einstein static universe. The Kerr-Newman metric in the background of Robertson-Walker universe is also briefly described.  相似文献   

20.
Aguirregabiria et al. showed that Einstein, Landau and Lifshitz, Papapetrou, and Weinberg energy-momentum complexes coincide for all Kerr-Schild metric. Bringely used their general expression of the Kerr-Schild class and found energy and momentum densities for the Bonnor metric. In this paper the latter results are obtained without using Aguirregabiria et al results. This also supports Aguirregabiria et al results as well as Cooperstock hypothesis. We obtain further the energy distribution of the space-time under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号