首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
 The formation of superoxide and hydroxyl radicals at the surface of smectite clays due to oxygen reduction is demonstrated by electron paramagnetic resonance spectroscopy. The yield of hydroxyl radicals is mainly a function of particle size of the clays and depends, to a lesser extent, on the clay lattice iron. Synthetic laponite clay with small platelet size (∼20 nm) and without lattice iron is leading in the formation of hydroxyl radicals followed by montmorillonite (∼200 nm). Fluorohectorite (∼2000 nm) was inactive to hydroxyl radical formation by oxygen reduction. Received: 20 January 2001 / Accepted: 7 August 2001  相似文献   

2.
Single-crystal electron paramagnetic resonance (EPR) spectra of a natural citrine quartz without any artificial irradiation, measured at W-band frequencies (∼94 GHz) and temperatures of 77, 110 and 298 K, allow better characterization of three previously-reported Centers (#6, #7 and B) and discovery of three new defects (B′, C′ and G′). The W-band EPR spectra reveal that Centers #6 and #7 do not reside on twofold symmetry axes, contrary to results from a previous X-band EPR study. The W-band spectra also show that the previously reported Center B is a mixture of two defects (B and B′) with similar g matrices but different-sized 27Al hyperfine structures. Center C′ has similar principal g values to the previously reported Center C but is distinct from the latter by a larger 27Al hyperfine structure with splittings from 0.10 to 0.22 mT. Also, Center G′ has a similar g matrix to the previously reported Center G but a different 27Al hyperfine structure with splittings from 0.41 to 0.53 mT. These spin-Hamiltonian parameters, together with observed thermal properties and microwave-power dependence, suggest that Centers #6 and #7 probably represent O23− type defects. Centers B and B′ are probably superoxide radicals (O2) with the unpaired spin localized on the same pair of oxygen atoms around a missing Si atom but linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Similarly, Centers G and G′ are most likely superoxide radicals with the unpaired spin localized on another pair of oxygen atoms around a missing Si atom and linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Center C′ is probably an ozonide radical associated with a missing Si atom and linked to a substitutional Al3+ ion at the neighboring tetrahedral site. This study exemplifies the value of  high-frequency EPR for discrimination of  similar defect centers and determination of  small local structural distortions that are often difficult to resolve in conventional  X- and Q-band EPR studies.  相似文献   

3.
This paper discusses the structural features required to stimulate a strong thermoluminescence (TL) glow peak near 300°C in clear natural quartz. For that reason, fresh TL data taken from several specimens prepared from five single crystals with known impurity content are shown. The TL emission was measured with a test dose of 10 mGy of γ-rays in the readout intervals 50–160 and 160–320°C. The readings were carried out prior and after the administration of a pre-dose of 175 kGy of γ-rays followed by heat-treatments at 400°C. For each single specimen, the OH content and the population of inclusions were evaluated by infrared spectroscopy and optical microscopy, respectively. The darkening induced by high γ dose was evaluated by optical spectroscopy. It was observed that the absorption at 475 nm and TL responses decrease with increase of the OH. It was shown that both smoky darkening and TL signals were better explained in terms of Li/Al and Li/OH content ratios rather than the absolute values of aluminum and alkali concentrations. The sensitization with high γ dose and heating is essential to create and stabilize a class of defects sites with Li+ ions dislodged from [AlO4/Li]0 and Li-dependent OH centers. It is suggested that the defect sites formed with Li+ act as electron traps during test dose irradiation, whereas electron-hole recombination occurs essentially at [AlO4]0 centers during the TL output near 300°C.  相似文献   

4.
 Dioctahedral 2:1 phyllosilicates with different interlayer charge have been studied theoretically by using transferable empirical interatomic potentials. The crystal structures of pyrophyllite, muscovite, margarite, beidellite, montmorillonite, and different smectites and illites have been simulated. The interatomic potentials were able to reproduce the experimental structure of phyllosilicates with high, medium and low interlayer charge. The calculated structures are in agreement with experiment for the main structural features of the crystal lattice. The effect of the cation substitution in the octahedral and tetrahedral sheets on the structural features has been also studied. Good linear relationships have been found, and the calculated effects are consistent with experimental results. Some unknown structural features of the crystal structures of clays are predicted in this work. Received: 8 March 2000 / Accepted: 19 September 2000  相似文献   

5.
 Geological sedimentary dolomite samples from the Superior Proterozoic are studied using electron paramagnetic resonance (EPR) spectroscopy. The complex spectra in the g=2.0 region is composed of Mn2+ lines and signals due to crystallization and radiation-induced defects. Measurements in microwave frequencies of 9.5 GHz (X-band) and 35 GHz (Q-band), and thermal and/or radiation treatments allowed identification of seven paramagnetic radicals in the g=2.0 region: (1) isotropic organic radical; (2) axial SO2 ; (3) axial PO2 0 or PO2 2−; (4) isotropic CO2 ; (5) axial CO2 ; (6) axial CO3 3−; (7) isotropic unknown line. The use of these paramagnetic centres as indicators of geological events is discussed. Received: 18 March 2002 / Accepted: 3 October 2002  相似文献   

6.
The aim of this study is to characterize the pedogenic clay minerals by using simple approach: mixing mineralogical and geochemical findings.The fine clay fractions (< 0.1 μm) of a Vertic Cambisol profile were studied by means of X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity (CEC).Qualitative and quantitative mineralogical compositions of the clay mixture were determined.Moreover, chemical equilibria and thermodynamic stabilities of minerals (calcite, gypsum, kaolinite, smectites and illites) were studied using results of ionic activities obtained from total concentration of various aqueous species in water extracts from soil-saturated pastes.XRD analysis shows a good homogeneity in the mineralogical composition of the soil material, with depth of soil profiles. The identified clay minerals are mainly illite–smectite mixed layers (I/S) and kaolinite. The chemical analysis of saturated paste extracts with clay minerals shows a slight undersaturation of the illitic phase while smectites and also calcite and gypsum reach the thermodynamic equilibrium along the soil profile.  相似文献   

7.
Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ± 0.35) × 107. The experimentally determined Gibbs free energy of formation (ΔGf,2980) for the kaolinite is −3,789.51 ± 6.60 kj mol−1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ΔGf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ΔGf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ΔGf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions.  相似文献   

8.
Iron silicate minerals are a significant component of sedimentary systems but their modes of formation remain controversial. Our analysis of published data identifies end‐member compositions and mixtures and allows us to recognize controls of formation of different mineral species. The compositional fields of glaucony, Fe‐illite, Fe–Al smectites are determined in the M+/4Si vs. Fe/Sum of octahedral cations (M+ = interlayer charge). Solid solutions could exist between these phases. The Fe–Al and Fe‐rich clay minerals form two distinct solid solutions. The earliest phases to be formed are Fe–Al smectites or berthierine depending on the sedimentation rate. Reductive microsystems appear in the vicinity of organic debris in unconsolidated sediments. The Fe is incorporated first in pyrite and then in silicates after oxidation. Potassium ions diffuse from the sea‐water–sediment interface. If not interrupted, the diffusion process is active until reaction completion is reached, i.e. formation of Fe‐illite or glauconite or a mineral assemblage (berthierine–nontronite) according to the available Al ion amounts in the microsystem. Mixed‐layer minerals are formed when the diffusion process is interrupted because of sedimentation, compaction or cementation. Despite the common belief of their value as palaeoenvironment indicators, these minerals can form in a variety of environments and over a period of millions of years during sediment burial.  相似文献   

9.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

10.
Irradiation techniques are often applied to gem minerals for color enhancement purposes. Natural green, blue and colorless specimens of rare gemological quality euclase, BeAlSiO4(OH), from Brazil were irradiated with gamma rays in the dose range from 10 to 500 kGy. Although the colors of the different specimens were not strongly influenced, two different irradiation-induced paramagnetic defect centers were found by electron paramagnetic resonance (EPR). The first one is an O hole center interacting with one Al neighbor and the second is a Ti3+ electron center. The EPR angular rotation patterns of both irradiation-induced defects were measured and analyzed. The results suggest that O hole centers are formed by dissociation of the hydroxyl ions, similar as in topaz crystals. In euclase the OH ions interconnect distorted Al octahedra and Be tetrahedra in O5 positions. During irradiation, the electrons are captured by titanium ions (Ti4+ + e), leading to the formation of paramagnetic Ti3+ ions. From the EPR rotation patterns it is clear that these ions substitute for Al ions. The spin Hamiltonian parameters of the irradiation-induced defects are analyzed and compared to similar defect centers in other mineral specimens. Thermal annealing experiments show that the O hole centers and Ti3+ electron centers are directly connected through the radiation process.  相似文献   

11.
Samples of natural sodalite, Na8Al6Si6O24Cl2, submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500°C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500°C for 30 min and then irradiated with γ doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445°C. A correlation between the EPR g = 2.01132 line and the 365°C TL peak was observed. A TL model is proposed in which a Na+ ion acts as a charge compensator when an Al3+ ion replaces a Si4+ lattice ion. The γ ray destruction of the Al–Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al3+ ion.  相似文献   

12.
[研究目的]钱家店铀矿床位于松辽盆地西南部,含铀岩系为上白垩统姚家组.目的层中含有大量的黏土矿物,因此揭示姚家组砂岩黏土矿物特征,对铀的成矿作用探讨至关重要.[研究方法]本文通过系统的显微镜下鉴定、扫描电镜、X射线衍射等分析测试手段,对钱家店地区姚家组砂岩黏土矿物的镜下特征、成分及含量进行了系统的观察和研究.[研究结果...  相似文献   

13.
纳岭沟铀矿床位于鄂尔多斯盆地东北部,含铀岩系为中侏罗统直罗组。文章通过薄片鉴定、扫描电镜、X射线衍射 等分析测试手段,对纳岭沟地区直罗组砂岩粘土矿物的镜下特征、成分及含量进行了系统的观察和研究,探讨了直罗组砂 岩粘土的矿物特征,并初步与伊犁盆地及二连盆地做了对比。研究表明,纳岭沟地区直罗组砂岩的粘土矿物主要为蒙皂 石,其次为高岭石、绿泥石,少量伊利石 。蒙皂石与高岭石存在相互转化现象,部分绿泥石由蒙皂石和高岭石转化而来, 成岩过程中蒙皂石并未大规模自发的向伊利石转化。砂岩的粘土总量较高,与伊犁盆地相比,富含蒙皂石,高岭石含量较 低,粘土矿物的吸附能力较强。在直罗组砂岩的成岩过程中,粘土矿物的吸附作用为直罗组富集了大量的铀,这是鄂尔多 斯盆地东北部地区能形成众多铀矿床乃至超大型铀矿床的重要条件。  相似文献   

14.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

15.
 The influence of parent rock and soil material on the corrosion rate of metallic fragments that remained in soil after World War I in the Soča front area (Slovenia), as well as the corrosion products of these fragments, were studied. The results of corrosion tests did not indicate appreciable differences in corrosion rates between various corrosion media. Consequently, the corrosion rates are influenced mostly by soil aeration, soil humidity and also by microstructures of alloys. Soil type seems to have the most influence on corrosion products. For the pH and Eh ranges that prevail in the studied soils, goethite is the only stable iron mineral. Lead minerals are not stable, and lead, in a Pb2+ cation form, is probably adsorbed onto some minerals – especially goethite – or is bound with organic matter. In distric brown soil, lead stays in the cation form as Pb2+ because of high soil acidity. Cuprite is stable in rendzina and brown soil on limestone, whereas in distric brown soil copper stays in solution as Cu2+. Received: 7 October 1999 · Accepted: 8 March 2000  相似文献   

16.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

17.
The rare mineral, potassium tobelite being the NH4-bearing mica, was first described in Lower Carboniferous coal-bearing rocks of the Egorshin–Kamensk district on the eastern slope of the Urals. It was formed from kaolinite and pyrophyllite at temperature less than 500°C and pressure about 2000 atm. The formation of tobelite was probably favored by postsedimentary stresses. Owing to sharp increase in pressure, gases were released from organic matter of the coal-bearing sequence and transformed into ammonia, which was subsequently incorporated as NH+ 4in the structure of clay minerals. The potassium tobelite is an indicator of high-grade metamorphism (up to anthracite rank) of the organic matter in coal-bearing sequences.  相似文献   

18.
The thermal stabilities and decay kinetics of three peroxy radicals (Centers #1, B and B′) and three other radiation-induced defects (#3, C′ and E1′) in natural quartz from the high-grade McArthur River uranium deposit (Athabasca basin, Canada) have been investigated by isochronal and isothermal annealing experiments and electron paramagnetic resonance (EPR) spectroscopy. Single-crystal EPR spectra of isochronally (2 h) annealed quartz show that these centers all grow in intensity to 280°C and then decay with further increase in temperature, but their disappearance temperatures differ markedly and depend on the initial concentrations (e.g., Center #1 in a dark smoky quartz is annealed out at 380°C, B and B′ at 420°C and #3 and C′ at 580°C). The isothermal decay processes of these centers are all of the second order type. The calculated activation energies for the peroxy radicals [#1 and B + B′ at 0.36 (9) and 0.83 (8) eV, respectively] are smaller than those of Centers #3, C′ and E1′ [1.09 (8), 1.24 (8) and 1.45 (7) eV, respectively]. Gamma-ray irradiations of thermally bleached quartz restore a fraction of the peroxy radicals, suggesting that their diamagnetic precursors are stable up to at least 800°C. The unusual decay characteristics of “peroxy radicals” in quartz reported in the literature are shown to most likely arise from multiple radiation-induced defects. These results have implications for not only applications of peroxy radicals in quartz for EPR dating but also better understanding of thermoluminescence and cathodoluminescence spectra of this mineral.  相似文献   

19.
Summary Investigations of natural and synthetic quartz specimens by cathodoluminescence (CL) microscopy and spectroscopy, electron paramagnetic resonance (EPR) and trace-element analysis showed that various luminescence colours and emission bands can be ascribed to different intrinsic and extrinsic defects. The perceived visible luminescence colours in quartz depend on the relative intensities of the dominant emission bands between 380 and 700 nm. Some of the CL emissions of quartz from the UV to the yellow spectral region (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) can be related to intrinsic lattice defects. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] centre have been suggested as being responsible for the transient emission band at 380–390 nm and the short-lived blue-green CL centered around 500 nm. CL emissions between 620 and 650 nm in the red spectral region are attributed to the nonbridging oxygen hole centre (NBOHC) with several precursors. The weak but highly variable CL colours and emission spectra of quartz can be related to genetic conditions of quartz formation. Hence, both luminescence microscopy and spectroscopy can be used widely in various applications in geosciences and techniques. One of the most important fields of application of quartz CL is the ability to reveal internal structures, growth zoning and lattice defects in quartz crystals not discernible by means of other analytical techniques. Other fields of investigations are the modal analysis of rocks, the provenance evaluation of clastic sediments, diagenetic studies, the reconstruction of alteration processes and fluid flow, the detection of radiation damage or investigations of ultra-pure quartz and silica glass in technical applications. Zusammenfassung Ursachen, spektrale Charakteristika und praktische Anwendungen der Kathodolumineszenz (KL) von Quarz – eine Revision Untersuchungen von natürlichen und synthetischen Quarzproben mittels Kathodolumineszenz (KL) Mikroskopie und -spektroskopie, Elektron Paramagnetischer Resonanz (EPR) und Spurenelementanalysen zeigen verschiedene Lumineszenzfarben und Emissionsbanden, die unterschiedlichen intrinsischen und extrinsischen Defekten zugeordnet werden k?nnen. Die sichtbaren Lumineszenzfarben von Quarz werden durch unterschiedliche Intensit?tsverh?ltnisse der dominierenden Emissionsbanden zwischen 380 und 700 nm verursacht. Einige der KL Emissionen vom UV bis zum gelben Spektralbereich (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) stehen im Zusammenhang mit intrinsischen Defekten. Die kurzlebigen Lumineszenzemissionen bei 380–390 nm sowie 500 nm werden mit kompensierten [AlO4/M+]-Zentren in Verbindung gebracht. Die KL-Emissionen im roten Spektralbereich bei 620 bis 650 nm haben ihre Ursache im “nonbridging oxygen hole centre” (NBOHC) mit verschiedenen Vorl?uferzentren. Die unterschiedlichen KL-Farben und Emissionsspektren von Quarz k?nnen oft bestimmten genetischen Bildungsbedingungen zugeordnet werden und erm?glichen deshalb vielf?ltige Anwendungen in den Geowissenschaften und in der Technik. Eine der gravierendsten Einsatzm?glichkeiten ist die Sichtbarmachung von Internstrukturen, Wachstumszonierungen und Defekten im Quarz, die mit anderen Analysenmethoden nicht oder nur schwer nachweisbar sind. Weitere wesentliche Untersuchungsschwerpunkte sind die Modalanalyse von Gesteinen, die Eduktanalyse klastischer Sedimente, Diageneseuntersuchungen, die Rekonstruktion von Alterationsprozessen und Fluidmigrationen, der Nachweis von Strahlungssch?den oder die Untersuchung von ultrareinem Quarz und Silikaglas für technische Anwendungen. Received March 29, 2000 Accepted October 27, 2000  相似文献   

20.
湖南省寒武系黑色岩系蕴藏着丰富的钒矿资源,钒矿床产于寒武系底部富含有机质的碳、磷、硅质黑色岩系中;矿体呈层状、似层状,形态简单,产状稳定。多项测试结果表明,钒的载体岩石为黑色页岩(碳质页岩、硅质碳质页岩);钒主要呈类质同象形式赋存于伊利石晶格中;矿石类型主要为钒矿石,少数矿床中石煤钒矿石也是重要的矿石类型;钒的价态以V3+为主。钒的富集主要发生在沉积阶段,与黑色岩系的沉积过程一致;矿床形成于缺氧环境中,大部分钒被黏土质吸附,随有机质、黏土质和硅质呈胶态腐泥沉入海底;在成岩过程中,云母类黏土矿物结构发生再结晶,将原有表面吸附的钒(V3+)转化为类质同象形式进入云母晶格中取代部分铝(Al3+),形成含钒伊利石并聚集成为钒矿床。研究表明,本区黑色岩系及其有关的钒矿在沉积成岩成矿过程中都离不开生物地球化学作用,矿床成因属于在热水作用参与下沉积形成的海相化学和生物地球化学沉积矿床,矿床类型为黑色页岩型钒矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号