首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
v--vThe phenomenon of "Lg blockage," where Lg is strongly attenuated by crustal heterogeneities, poses a serious problem to CTBT monitoring because Lg is an important seismic phase for discrimination. This paper examines blockage in three continental regions where the Lg blockages may be caused by large, enclosed sedimentary basins along the propagation path. The Barents Sea Basin blocks Lg propagation across the Barents Sea from the Russian nuclear test sites at Novaya Zemlya to Scandinavian stations. Also, "early Lg" waves are observed in Sn codas on NORSAR, NORESS, and ARCESS recordings of Novaya Zemlya explosions where direct Lg is blocked. Early Lg waves may have resulted from Sn-to-Lg mode conversion at the contact between the Barents Basin and the Kola Peninsula. The Northern and Southern Caspian Sea Basins also block Lg waves from PNEs and earthquakes, perhaps due to thick, low-velocity, low-Q sediments replacing the granitic layer rocks in the crust. Lg blockage has also been observed in the Western Mediterranean/Levantine Basin due to low-Q sediments and crustal thinning. A "basin capture" model is proposed to explain Lg blockage in sedimentary basins. In this model, shear waves that reverberate in the crust and constitute the Lg wave train are captured, delayed, and attenuated by thick, low-velocity sediments that replace the "granitic" layer rocks of the upper crust along part of the propagation path. Sn waves, which propagate below the basin, would not be blocked and in fact, the blocked Lg waves may be diverted downward into Sn waves by the low velocity sediments in the basin.  相似文献   

2.
—?T-phase propagation from ocean onto land is investigated by comparing data from hydrophones in the water column with data from the same events recorded on island and coastal seismometers. Several events located on Hawaii and the emerging seamount Loihi generated very large amplitude T phases that were recorded at both the preliminary IMS hydrophone station at Point Sur and land-based stations along the northern California coast. We use data from seismic stations operated by U. C. Berkeley along the coast of California, and from the PG&;E coastal California seismic network, to estimate the T-phase transfer functions. The transfer function and predicted signal from the Loihi events are modeled with a composite technique, using normal mode-based numerical propagation codes to calculate the hydroacoustic pressure field and an elastic finite difference code to calculate the seismic propagation to la nd-based stations. The modal code is used to calculate the acoustic pressure and particle velocity fields in the ocean off the California coast, which is used as input to the finite difference code TRES to model propagation onto land. We find both empirically and in the calculations that T phases observed near the conversion point consist primarily of surface waves, although the T phases propagate as P waves after the surface waves attenuate. Surface wave conversion occurs farther offshore and over a longer region than body wave conversion, which has the effect that surface waves may arrive at coastal stations before body waves. We also look at the nature of T phases after conversion from ocean to land by examining far inland T phases. We find that T phases propagate primarily as P waves once they are well inland from the coast, and can be observed in some cases hundreds of kilometers inland. T-phase conversion at tenuates higher frequencies, however we find that high frequency energy from underwater explosion sources can still be observed at T-phase stations.  相似文献   

3.
v--vThis second paper (Part 2) pertaining to optimized site-specific threshold monitoring addresses the application of the method to regions covered by a teleseismic or a combined regional-teleseismic network. In the first paper (Part 1) we developed the method for the general case, and demonstrated its application to an area well-covered by a regional network (the Novaya Zemlya nuclear test site). In the present paper, we apply the method to the Indian and Pakistani nuclear test sites, and show results during the periods of nuclear testing by these two countries in May 1998. Since the coverage by regional stations in these areas is poor, an optimized approach requires the use of selected, high-quality stations at teleseismic distances.¶To optimize the threshold monitoring of these test sites, we use as calibration events either one of the nuclear explosions or a nearby earthquake. From analysis of the calibration events we derive values for array beamforming steering delays, filter bands, short-term averages (STA) lengths, phase travel times (P waves), and amplitude-magnitude relationships for each station. By applying these parameters, we obtain a monitoring capability of both test sites ranging from mb 2.8-3.0 using teleseismic stations only. When including the nearby Nilore station to monitor the Indian tests, we show that the threshold can be reduced by about 0.4 magnitude units. In particular, we demonstrate that the Indian tests on 13 May, 1998, which were not detected by any known seismic station, must have corresponded to a magnitude (mb) of less than 2.4.¶We also discuss the effect of a nearby aftershock sequence on the monitoring capability for the Pakistani test sites. Such an aftershock sequence occurred in fact on the day of the last Pakistani test (30 May, 1998), following a large (mb 5.5) earthquake in Afghanistan located about 1100 km from the test site. We show that the threshold monitoring technique has sufficient resolution to suppress the signals from these interfering aftershocks without significantly affecting the true peak of the nuclear explosion on the threshold trace.  相似文献   

4.
-- I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ~0.01т.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f S ~0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.  相似文献   

5.
v--vS/P amplitude ratios have proven to be a valuable discriminant in support of monitoring a Comprehensive Nuclear Test Ban Treaty. Regional S and P phases attenuate at different rates and the attenuation can vary geographically. Therefore, calibration is needed to apply the S/P discriminant in new regions. Calibration includes application of frequency-dependent source and distance corrections for regional Pn, Pg, Sn, and Lg phases.¶Jenkins et al. (1998) developed Pn, Pg, Sn, and Lg amplitude models for nine geographic regions and two global composite models, stable and tectonic. They determined frequency-dependent source and attenuation corrections from a large data set obtained from the Prototype International Data Center (PIDC). We use their corrections to evaluate calibrated S/P discriminants.¶Our discrimination data set includes >1000 amplitude ratios from earthquakes, industrial explosions, chemical explosions, and nuclear explosions from Lop Nor, India and Pakistan. We find that the calibrated S/P ratio is largest for earthquakes and smallest for the nuclear explosions, as expected. However, the discriminant is not universally valid. In particular, the S/P ratio for the Pakistan nuclear explosion fell within the normal range for the earthquakes. This event was recorded by only a few stations at far-regional distances and appears to have an anomalously high Sn amplitude. The industrial explosions overlap with the earthquake population, however the buried chemical explosions generally register lower S/P ratio than earthquakes.  相似文献   

6.
--We have examined the digital waveform data and relocated a number of events within the June 1987 earthquake swarm, which occurred beneath the northern part of Lake Aswan, 70 km southwest of the Aswan High Dam in Egypt. This swarm occurred between June 17th and 19th with a maximum magnitude event of "ML"=3.5.¶Cross correlation between a chosen master and the analyzed events has been carried out on seismograms from stations of the Aswan network. The cross correlation demonstrates the presence of a difference in both the P wave ((tp) and the S wave ((ts) arrival times at each station in the network relative to the arrival times of the master event at the same stations. (tp ranges between т.15 and 0.11 second, while (ts ranges between т.17 and 0.11 second.¶The primary interpretation is that the se time differences represent an error in the manually picking arrival times. Then, (tp and (ts values for each event result from a change in the hypocentral parameters from those of the master event, assuming the P- and S-wave velocity distribution remains constant during the swarm activity. This interpretation enables us to determine the relative distribution of hypocenters with respect to the hypocentral location of the master event. We present the results from a swarm of 9 events demonstrating they originate from a nearly unique location, rather than the zone identified from the preliminary locations which used manually picked onset times.  相似文献   

7.
v--vRegional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (M < 4.8) seismic events. This path calibration of regional seismic phases is strongly dependent on the accuracy of hypocentral locations of calibration (or master) events. This information can be difficult to obtain, especially for smaller events. Generally, explosion or quarry blast generated travel-time data with known locations and origin times are useful for developing the path calibration parameters, but in many regions such data sets are scanty or do not exist. We present a method which is useful for regional path calibration independent of such data, i.e. with earthquakes, which is applicable for events down to Mw = 4 and which has successfully been applied in India, central Asia, western Mediterranean, North Africa, Tibet and the former Soviet Union. These studies suggest that reliably determining depth is essential to establishing accurate epicentral location and origin time for events. We find that the error in source depth does not necessarily trade-off only with the origin time for events with poor azimuthal coverage, but with the horizontal location as well, thus resulting in poor epicentral locations. For example, hypocenters for some events in central Asia were found to move from their fixed-depth locations by about 20 km. Such errors in location and depth will propagate into path calibration parameters, particularly with respect to travel times. The modeling of teleseismic depth phases (pP, sP) yields accurate depths for earthquakes down to magnitude Mw = 4.7. This Mw threshold can be lowered to four if regional seismograms are used in conjunction with a calibrated velocity structure model to determine depth, with the relative amplitude of the Pnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S-wave path to the surface and becomes critical, developing a head wave by S to P conversion is also indicative of depth. The detailed characteristic of this phase is controlled by the crustal waveguide. The key to calibrating regionalized crustal velocity structure is to determine depths for a set of master events by applying the above methods and then by modeling characteristic features that are recorded on the regional waveforms. The regionalization scheme can also incorporate mixed-path crustal waveguide models for cases in which seismic waves traverse two or more distinctly different crustal structures. We also demonstrate that once depths are established, we need only two-stations travel-time data to obtain reliable epicentral locations using a new adaptive grid-search technique which yields locations similar to those determined using travel-time data from local seismic networks with better azimuthal coverage.  相似文献   

8.
v--v Continuous seismic threshold monitoring is a technique that has been developed over the past several years to assess the upper magnitude limit of possible seismic events that might have occurred in a geographical target area. The method provides continuous time monitoring at a given confidence level, and can be applied in a site-specific, regional or global context.¶In this paper (Part 1) and a companion paper (Part 2) we address the problem of optimizing the site-specific approach in order to achieve the highest possible automatic monitoring capability of particularly interesting areas. The present paper addresses the application of the method to cases where a regional monitoring network is available. We have in particular analyzed events from the region around the Novaya Zemlya nuclear test site to develop a set of optimized processing parameters for the arrays SPITS, ARCES, FINES, and NORES. From analysis of the calibration events we have derived values for beam-forming steering delays, filter bands, short-term average (STA) lengths, phase travel times (P and S waves), and amplitude-magnitude relationships for each array. By using these parameters for threshold monitoring of the Novaya Zemlya testing area, we obtain a monitoring capability varying between mb 2.0 and 2.5 during normal noise conditions.¶The advantage of using a network, rather than a single station or array, for monitoring purposes becomes particularly evident during intervals with high global seismic activity (aftershock sequences), high seismic noise levels (wind, water waves, ice cracks) or station outages. For the time period November-December 1997, all time intervals with network magnitude thresholds exceeding mb 2.5 were visually analyzed, and we found that all of these threshold peaks could be explained by teleseismic, regional, or local signals from events outside the Novaya Zemlya testing area. We could therefore conclude within the confidence level provided by the method, that no seismic event of magnitude exceeding 2.5 occurred at the Novaya Zemlya test site during this two-month time interval.¶As an example of particular interest in a monitoring context, we apply optimized threshold processing of the SPITS array for a time interval around 16 August 1997 mb 3.5 event in the Kara Sea. We show that this processing enables us to detect a second, smaller event from the same site (mb 2.6), occurring about 4 hours later. This second event was not defined automatically by standard processing.  相似文献   

9.
Application of Regional Phase Amplitude Tomography to Seismic Verification   总被引:1,自引:0,他引:1  
v--vWe have applied tomographic techniques to amplitude data to quantify regional phase path effects for use in source discrimination studies. Tomography complements interpolation (kriging) methods by extending our ability to apply path corrections into regions devoid of calibration events, as well as raising levels of confidence in the corrections because of their more physical basis. Our tomography technique solves for resolvable combinations of attenuation, source-generation, site and spreading terms. First difference regularization is used to remove singularities and reduce noise effects.¶In initial tests the technique was applied to a data set of 1488, 1.0 Hz, Pg/Lg amplitude ratios from 13 stations for paths inside a 30° by 40° box covering western China and surrounding regions. Tomography reduced variance 60%, relative to the power-law distance correction traditionally applied to amplitude ratios. Relative Pg/Lg attenuation varied with geologic region, with low values in Tibet, intermediate values in basins and high values for platforms and older crust. Spatial patterns were consistent with previous path effect studies in Asia, especially local earthquake coda-Q. Relative spreading was consistent with expected values for Pg and Lg. Relative site terms were similar to one another, yet some tradeoff with attenuation was evident.¶Tomography residuals followed systematic trends with distance, which may result from the evolution from direct to coda phases, focusing, model tradeoff or data windowing effects. Examination of the residuals using a kriging interpolator showed coherent geographical variations, indicating unmodeled path effects. The residual patterns often follow geological boundaries, which could result from attenuating zones or minor blockages that are too thin to be resolved, or that have anisotropic effect on regional phases. These results will guide efforts to reparameterize tomography models to more effectively represent regional wave attenuation and blockage. The interpolated residuals also can be combined with predictions of the tomographic model to account for path effects in discrimination studies on a station by station basis.  相似文献   

10.
The southwestern (SW) coast of Africa (Namibia and Angola) features long sandy beaches and a wave climate dominated by energetic swells from the Southsouthwest (SSW), therefore approaching the coast with a very high obliquity. Satellite images reveal that along that coast there are many shoreline sand waves with wavelengths ranging from 2 to 8 km. A more detailed study, including a Fourier analysis of the shoreline position, yields the wavelengths (among this range) with the highest spectral density concentration. Also, it becomes apparent that at least some of the sand waves are dynamically active rather than being controlled by the geological setting. A morphodynamic model is used to test the hypothesis that these sand waves could emerge as free morphodynamic instabilities of the coastline due to the obliquity in wave incidence. It is found that the period of the incident water waves, Tp, is crucial to establish the tendency to stability or instability, instability increasing for decreasing period, whilst there is some discrepancy in the observed periods. Model results for Tp = 7–8 s clearly show the tendency for the coast to develop free sand waves at about 4 km wavelength within a few years, which migrate to the north at rates of 0.2–0.6 km yr?1. For larger Tp or steeper profiles, the coast is stable but sand waves originated by other mechanisms can propagate downdrift with little decay.  相似文献   

11.
--Measurements on drop size spectra were made in cumulus clouds over Pune (inland) region on many days during the summer monsoon seasons. In this paper, the measurements in non-raining cumulus clouds made in the years 1984, 1985 and 1986 at different levels and for different cloud thickness have been studied. In general, the drop size spectra broadened with height and the concentration of drops with diameter > 50 wm (NL), mean volume diameter (MVD), liquid water content (LWC) and dispersion increased with height while the concentration of drops with diameter < 20 wm (NS) and the total concentration of drops (NT) decreased with height. The average drop size distributions were unimodal at the lower levels while they were bimodal at the higher levels. High water contents were confined to drops in the size range 5-25 wm at both higher and lower levels. The average drop size spectra were broader and NL, LWC, MVD and dispersion greater while NT and NS smaller for thicker clouds (range of vertical extent 1.1-2.1 km) as compared to those for thinner clouds (range of vertical extent 0.3-1.1 km). Water contents for the drops > 28 wm were higher while those for the drops > 28 wm lower in thicker clouds than in thinner clouds. The average drop size distributions were bimodal in the former case, while they were unimodal in the other case.  相似文献   

12.
The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece (M w  5.3) generated unusually strong long-period waves (periods 4–8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40–250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).  相似文献   

13.
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (M w = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.  相似文献   

14.
v—vIn compliance with the Comprehensive Nuclear-Test-Ban-Treaty (CTBT) the International Monitoring System (IMS) was designed for detection and location of the clandestine Nuclear Tests (NT). Two auxiliary IMS seismic stations MRNI and EIL, deployed recently, were subjected to detectability, travel-time calibration and discrimination analysis. The study is based on the three recent 1998 underground nuclear explosions: one of India and two of Pakistan, which provided a ground-truth test of the existing IMS. These events, attaining magnitudes of 5.2, 4.8 and 4.6 correspondingly, were registered by many IMS and other seismic stations.¶The MRNI and EIL broadband (BB) stations are located in Israel at teleseismic distances (from the explosions) of 3600, 2800 and 2700ukm, respectively, where the signals from the tests are already weak. The Indian and the second Pakistan NT were not detected by the short-period Israel Seismic Network (ISN), using standard STA/LTA triggering. Therefore, for the chosen IMS stations we compare the STA/LTA response to the results of the more sensitive Murdock-Hutt (MH) and the Adaptive Statistically Optimal Detector (OD) that showed triggering for these three events. The second Pakistan NT signal arrived at the ISN and the IMS stations in the coda of a strong Afghanistan earthquake and was further disturbed by a preceding signal from a local earthquake. However, the NT signal was successfully extracted at EIL and MRNI stations using MH and OD procedures. For comparison we provide the signal analysis of the cooperating BB station JER, with considerably worse noise conditions than EIL and MRNI, and show that OD can detect events when the other algorithms fail. Using the most quiet EIL station, the most sensitive OD and different bandpass filters we tried in addition to detect the small Kazakh chemical 100-ton calibration explosion of 1998, with magnitude 3.7 at a distance approaching 4000ukm. The detector response curve showed uprising in the expected signal time interval, but yet was low for a reliable decision.¶After an NT is detected it should be recognized. Spectra were calculated in a 15-sec window including P and P-coda waves. The spectra for the first Pakistan NT showed a pronounced spectral null at 1.7uHz for all three components of the EIL station. The effect was confirmed by observation of the same spectral null at the vertical component of the ISN stations. For this ground-truth explosion with a reported shallow source depth, the phenomenon can be explained in terms of the interference of P and pP phases. However, the spectral null feature, considered separately, cannot serve as a reliable identification characteristic of nuclear explosions, because not all the tests provide the nulls, whereas some earthquakes show this feature. Therefore, the multi-channel spectral discrimination analysis, based on a spectral ratio of low-to-high frequency energy (in the 0.6–1uHz and 1–3uHz bands), and a semblance of spectral curves (in the 0.6–2uHz band), was conducted. Both statistics were calculated for the vertical component of the ISN stations as well for the three components of the EIL station. The statistics provided a reliable discrimination between the recent NT and several nearby earthquakes, and showed compliance with the former analysis of Soviet and Chinese NT, where nuclear tests demonstrated lower values of energy ratio and spectral semblance than earthquakes. ¶Accurate location of NT requires calibration of travel time for IMS stations. Using known source locations, IASPEI91 travel-time tables and NEIC origin times we calculated expected arrival time for the P waves to the EIL and MRNI stations and showed that the measured arrival time has a delay of about 4 sec. Similar results were obtained for the nearby Pakistan earthquakes. The analysis was complimented by the P travel-time measurements for the set of Semipalatinsk NT, which showed delays of about 3.7usec to the short-period MBH station which is a surrogate station for EIL. Similar delays at different stations evidence a path- rather than site-effect. The results can be used for calibration of the IMS stations EIL and MRNI regarding Asian seismic events.  相似文献   

15.
-- A new technique for the parallel computing of 3-D seismic wave propagation simulation is developed by hybridizing the Fourier pseudospectral method (PSM) and the finite-difference method (FDM). This PSM/FDM hybrid offers a good speed-up rate using a large number of processors. To show the feasibility of the hybrid, a numerical 3-D simulation of strong ground motion was conducted for the 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Comparisons between the simulation results and observed waveforms from a dense strong ground motion network in Taiwan clearly demonstrate that the variation of the subsurface structure and the complex fault slip distribution greatly affect the damage during the Chi-Chi earthquake. The directivity effect of the fault rupture produced large S-wave pulses along the direction of the rupture propagation. Slips in the shallow part of the fault generate significant surface waves in Coastal Plain along the western coast. A large velocity gradient in the upper crust can propagate seismic waves to longer distances with minimum attenuation. The S waves and surface waves were finally amplified further by the site effect of low-velocity sediments in basins, and caused the significant disasters.  相似文献   

16.
v--vThe special aerological observations carried out as a part of Land Surface Processes Experiment (LASPEX) were used to investigate the thermodynamic structure of the convective boundary layer during the summer monsoon of 1997. The analysis suggested that the convective boundary layer top was found at 700 hPa which was associated with Še minimum and Šes maximum values. Double-mixing line structure was noticed in the conserved variable diagrams which was possibly attributed to the radiative warming/evaporation of falling precipitation.  相似文献   

17.
We analysed in detail three earthquakes recorded in a small-aperture accelerometric array in Mexico City, using the correlation of the records as a function of time along the accelerogram and frequency. Ground response is strongly conditioned by the fundamental period of the soft soils at the site of the array (T0). Energy at periods longer than 2T0 is guided by the crustal structure (with a thickness of 45 km). The wave field at periods between T0 and 2T0 also consists of surface waves but guided by the upper 2–3 km of volcanic sediments in central Mexico. For periods smaller than T0, ground motion is uncorrelated among the stations. Our results indicate that seismic response of Mexico City, including its very long duration, results from deeply guided surface waves (between 2 and 45 km depth) interacting with the very local response of the soft surficial clay layer.  相似文献   

18.
v--vThe prototype International Data Centre (IDC) in Arlington, Virginia has been acquiring data from seismic stations at locations designated in the Comprehensive Test-Ban Treaty for the International Monitoring System (IMS) since the start of 1995. A key characteristic of these stations is their background noise levels and their seasonal and diurnal variability. Since June 1997 an automated sample selection effort has collected over 700,000 individual noise sample spectra from 39 primary and 57 auxiliary stations. Monthly median and 5 and 95 percentile estimates have been calculated for each channel of every station. Compatibility of median spectra obtained for the same station and channel in the same month for two different years confirms the consistency of the noise-sampling algorithm used. A preliminary analysis of the results shows strong (more than a factor of two) seasonal variation at a quarter of all stations. Strong diurnal variations at half of the sites indicate that many of the selected sites are poorly located with respect to cultural noise sources. The results of this study are already being used to evaluate station quality, improve those processes that require background noise values, such as automatic association and requesting auxiliary station data, and to improve the estimation of station and network detection and location thresholds.  相似文献   

19.
v--vThe International Monitoring System (IMS) includes a diverse set of seismic arrays with different configurations. These configurations have apertures ranging from less than 1 to more than 25 km and minimum interelement spacings varying from 0.1 to 3.6 km. This paper presents a scheme for initial beam deployment for this variety of seismic arrays. Beamforming is equivalent to a spatiotemporal bandpass filter of which passband is defined by the minimum and maximum wavenumbers, which are functions of the geometry configuration of the array. Deployment of steered-beams for signal detection is based on the wavenumber resolution of the array, slowness and frequency distributions of seismic phases, and coherence properties of seismic signals and noises among sensors. Within the wavenumber passband, all possible slowness values are determined by the resolution for each frequency band, and those that are outside the range of seismological interest are excluded. The appropriate azimuthal distribution for each selected slowness is determined from the azimuthal resolution. Using this approach, detection beams for each array are rationally deployed in the slowness-azimuth and frequency domain.  相似文献   

20.
-- A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), and the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. T he Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号