首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.  相似文献   

2.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

3.
陈红 《大气科学》2019,43(4):783-795
利用第五次耦合模式比较计划(CMIP5)40个模式的模拟资料和分类集合的方法,评估了耦合模式对20世纪太平洋年代际振荡(PDO)特征的模拟能力。结果表明,CMIP5多数模式对PDO周期有着较好的刻画能力,能模拟出PDO的年代际变化周期。模式对PDO模态空间特征的模拟能力存在较大差异,小部分模式模拟效果较差。进一步的分析表明,对PDO模态模拟较好的第1类模式,能较好地再现热带太平洋与北太平洋海表温度异常(SSTA)年代际变化间的关系,而且热带太平洋SSTA通过大气遥相关影响北太平样海表温度的过程也模拟的较成功。对PDO模态模拟差的模式,不能合理模拟出热带太平洋SSTA对北太平洋海表温度影响的遥相关过程。以上研究也证实了热带太平洋地区海表温度的年代际变率对北太平洋海表温度年代际变率的重要影响,热带太平洋SSTA对北太平洋SSTA的影响是通过大气遥相关实现的。利用CMIP5中等排放情景模拟结果,分析了第1类模式预估的北太平洋年代际变率的特征,发现21世纪北太平洋年代际变率的主要模态为一致的正异常分布且呈现明显的上升趋势,第二模态则表现为类似于20世纪典型PDO的马蹄型SSTA分布。  相似文献   

4.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

5.
S. Kravtsov 《Climate Dynamics》2012,39(9-10):2377-2391
This paper assesses potential predictability of decadal variations in the El Ni?o/Southern Oscillation (ENSO) characteristics by constructing and performing simulations using an empirical nonlinear stochastic model of an ENSO index. The model employs decomposition of global sea-surface temperature (SST) anomalies into the modes that maximize the ratio of interdecadal-to-subdecadal SST variance to define low-frequency predictors called the canonical variates (CVs). When the whole available SST time series is so processed, the leading canonical variate (CV-1) is found to be well correlated with the area-averaged SST time series which exhibits a non-uniform warming trend, while the next two (CV-2 and CV-3) describe secular variability arguably associated with a combination of Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) signals. The corresponding ENSO model that uses either all three (CVs 1–3) or only AMO/PDO-related (CVs 2 and 3) predictors captures well the observed autocorrelation function, probability density function, seasonal dependence of ENSO, and, most importantly, the observed interdecadal modulation of ENSO variance. The latter modulation, and its dependence on CVs, is shown to be inconsistent with the null hypothesis of random decadal ENSO variations simulated by multivariate linear inverse models. Cross-validated hindcasts of ENSO variance suggest a potential useful skill at decadal lead times. These findings thus argue that decadal modulations of ENSO variability may be predictable subject to our ability to forecast AMO/PDO-type climate modes; the latter forecasts may need to be based on simulations of dynamical models, rather than on a purely statistical scheme as in the present paper.  相似文献   

6.
The emerging need for extended climate prediction requires a consideration of the relative roles of climate change and low-frequency natural variability on decadal scale. Addressing this issue, this study has shown that the variability of the Indian monsoon rainfall (IMR) consists of three decadal scale oscillations and a nonlinear trend during 1901–2004. The space–time structures of the decadal oscillations are described. The IMR decadal oscillations are shown to be associated with Atlantic Multidecadal Oscillation (AMO), Atlantic tripole oscillation and Pacific Decadal Oscillation (PDO). The sea surface temperatures (SSTs) of the North Pacific and North Atlantic Oceans are also resolved as nonlinear decadal oscillations. The SST AMO mode has high positive correlation with IMR while the SST tripole mode and SST PDO have negative correlation. The trend in IMR increases during the first half of the period and decreases during the second half. The IMR trend is modified when combined with the three decadal oscillations.  相似文献   

7.
Multi-year predictability in a coupled general circulation model   总被引:1,自引:0,他引:1  
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15–20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.  相似文献   

8.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

9.
冬季北太平洋海气环流年代际异常的统计动力诊断   总被引:2,自引:1,他引:1  
本文对冬季北太平洋大气和大洋环流做了联合复经验正交函数(CEOF)分解和小波分析, 并分别讨论了第一、二模态的年代际变化及其与海表温度异常(SSTA)年代际变化(PDO、NPGO模态)的关系, 得到以下主要结论:第一、二模态对时间系数的分析显示, 其与PDO、NPGO指数的相关性较高, 且小波分析表明其分别具有明显的准22、12年的年代际变化周期, 这与PDO、NPGO模态的周期相同;第一、二模态时间系数对北太平洋SSTA的回归分析表明, 其回归系数场的空间分布分别与PDO、NPGO的十分接近。第一、二模态空间场中大气环流异常分别类似于海平面气压异常(SLPA)的AL、NPO模态, 可分称其为AL、NPO的风场模;而大洋环流异常则分别相应于SSTA的PDO、NPGO模态, 可称其为PDO、NPGO的流场模。由第一、二模态近表层流场异常得到的垂直运动空间分布分别与PDO、NPGO的空间结构相似, 说明海洋上层海盆尺度大洋环流引起的垂直运动所导致的海温动力变化是形成PDO、NPGO的重要原因, 而大洋环流异常扮演着中介角色。  相似文献   

10.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

11.
A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, s...  相似文献   

12.
Annually averaged global mean land air temperature and sea surface temperature (SST) combined, and global mean SST alone share similar fluctuations. We examine contributions by modes of SST variability in the global mean SST based on a new version (version 3) of global sea-ice and SST (GISST3). Besides a trend mode, the dominant modes are El Niño-Southern Oscillation (ENSO), interhemispheric oscillation, and North Pacific oscillation. Statistics over the period of 1880–1997 show that excluding a warming trend the fluctuation on interannual (IA) and decadal-interdecadal (DID) time scales is dominated by IA ENSO and DID ENSO-like variability. However, the contribution by IA ENSO cycles experiences significant fluctuations, and there appears to be strong modulations by ENSO-like variability on DID or longer time scales: during several decade-long periods, when DID ENSO-like variability raises the temperature in the equatorial eastern Pacific, the contribution by IA ENSO cycles weakens to an insignificant level. The latest example of such modulation is the period since about 1980; despite the exceptional strength of El Niño events, the contribution by IA ENSO cycles weakens, suggesting that the exceptional strength is a consequence of superposition of IA El Niño events, a warming phase of DID ENSO-like variability, and possibly an ENSO-like warming trend.  相似文献   

13.
基于多套全球海温再分析数据和2种线性趋势分析方法,评估了1958-2014年中国近海海表温度(SST)的变化及其对全球气候变化的响应特征,并与全球平均地表温度特别是与若干重要海区的SST做了比较。研究表明:在全球变暖的显著加速期(1980年代和1990年代),中国近海区域年平均SST表现出更快速的升温特征,其速率达0.60℃/10a,是同期全球平均升温速率的5倍以上;在变暖暂缓期(1998-2014年),中国近海SST出现显著的下降趋势。研究还表明,中国近海区域SST的年代际变化与太平洋年代际涛动(PDO)的位相转换一致,前者SST的快速上升(下降)期与PDO正(负)位相最大值的时期相对应,PDO可能是通过东亚季风和黑潮影响中国近海SST的年代际变化。  相似文献   

14.
张海燕  陶丽  徐川 《大气科学》2022,46(4):859-872
本文利用1958~2018年期间海表面温度(SST)异常和湍流热通量异常变化的关系,探讨了其与北太平洋年代际振荡(PDO)相关的年际和年代际时间尺度上在不同海域的海气相互作用特征。结果表明:在年际尺度上,黑潮—亲潮延伸区(KOE)表现为显著大气强迫海洋,赤道中东太平洋表现为显著海洋强迫大气;在年代际尺度上,PDO北中心表现为大气强迫海洋,加利福尼亚附近则表现为显著海洋强迫大气。进一步分析表明:加利福尼亚附近区域是北太平洋准12年振荡的关键区域之一,与PDO准十年的周期类似,加利福尼亚附近的冷(暖)海温对应其上有反气旋(气旋)型环流,赤道中太平洋海水上翻和北太平洋东部副热带区域经向风应力的变化是北太平洋准12年振荡的另外两个重要环节。  相似文献   

15.
黄必城  苏涛  封国林 《大气科学》2019,43(3):525-538
本文基于动力调整方法,利用客观分析海气通量(OAFlux)资料研究了1958~2016年全球海洋蒸发量变化及其动力作用和辐射强迫分量的变化,发现海洋蒸发量及其动力作用分量具有一致性年代际变化特征,特别是在20世纪70年代及90年代末期存在明显的年代际转折。进一步分析发现:主要动力因子有太平洋—北美遥相关型(PNA)、北极涛动(AO)、北大西洋涛动(NAO)、厄尔尼诺—南方涛动(ENSO)和阿留申低压(AL),并受到太平洋年代际振荡(PDO)的影响,其中,1970年代末期的转折与PNA、PDO、ENSO和AL密切相关,而1990年代末期的转折还与NAO变化有关。动力作用分量的前六个模态解释方差达到67.5%,其中,低纬北太平洋和印度洋蒸发异常主要与海表温度(SST)及其引起的环流异常有关,南太平洋、中纬北太平洋和北大西洋蒸发异常与环流异常直接相关。ENSO与PDO在全球海洋蒸发量上的影响要大于NAO。单因子相关分析发现南方涛动指数(SOI)、NAO和PDO与海洋蒸发年代际变化密切相关。总体来说,动力作用分量在海洋蒸发的年代际变化中起主导作用,其中,以ENSO、NAO和PDO的影响最大。  相似文献   

16.
Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.  相似文献   

17.
长江梅雨的长期变率与海洋的关系及其可预报性研究   总被引:4,自引:0,他引:4  
采用最新发布的梅雨国家标准资料,以长江区域梅雨为代表,在分析区域梅雨的多时间尺度变化特征的基础上,从海洋外强迫影响因子角度探讨了梅雨的可预报性来源,进一步综合海洋背景变率和预测模型回报试验讨论梅雨异常的可预报性。结果表明:(1)长江梅雨呈现周期为3-4、6-8、12-16、32、64 a的多时间尺度变化分量和长期减少趋势。其中,3-4 a准周期变化是梅雨异常变化的主要分量。梅雨的干湿位相转变受12-16 a的准周期变化调制,极端涝年易出现在12-16 a准周期变化湿位相和3-4 a变化分量峰值位相叠加的情况。(2)长江梅雨的各准周期变化分量有不同的海洋外强迫背景,是梅雨可预报性的重要来源。与时间尺度较短的年际变化分量相关联的海温关键区主要分布于热带,而与时间尺度较长的年代际或多年代际变化分量相联系的海温关键区则来自中高纬度。3-4 a准周期变化分量的海洋外强迫强信号随季节变化由前冬的ENSO(厄尔尼诺-南方涛动)转为春末夏初的印度洋偶极子(IOD)。6-8和12-16 a年准周期变化分量的海洋强迫关键区主要位于太平洋。准32和准64 a周期振荡则受北太平洋多年代际变化(PDO)和北大西洋多年代际变化(AMO)的共同影响。梅雨的长期变化趋势则与全球变暖背景及以PDO为代表的年代际海洋外强迫因子相联系。(3)尽管梅雨异常与ENSO的正相关关系呈现减弱趋势,但20世纪70年代以后的梅雨异常年际变化分量的可预报性有所增大。(4)将梅雨各变化分量作为预测对象分别建模,进一步构建梅雨异常预测统计模型。采用该模型对近5年梅雨预测进行独立样本检验,有较好的回报效果,验证了梅雨异常年际分量可预报性的稳定性以及基于多时间尺度分离建立梅雨预测模型的优越性。   相似文献   

18.
This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100-200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods. Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period. The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale, and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO). Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST). The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months. Therefore, a change of TPDO is likely related to the variation of PDO. The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.  相似文献   

19.
我国华南3月份降水年代际变化的特征   总被引:5,自引:2,他引:3  
利用1951~2005年华南3月份降水资料、太平洋年代际振荡(PDO)指数以及NCEP再分析资料,对华南3月份降水年代际变化特征、及其对应的大尺度环流以及与PDO的关系进行了分析。结果表明,华南3月份降水存在显著的年代际变化特征,并且Mann-Kendal突变检验表明华南3月份降水在1978年左右发生年代际突变,从之前的降水偏少转变为降水偏多。我国华南3月份降水与PDO有着显著的相关。进一步研究表明,在年代际降水偏少时期,PDO处于负位相(北太平洋海温偏高,中东太平洋海温偏低),北太平洋海平面气压场和高度场偏高,亚洲大陆海平面气压场和高度场偏低,赤道西太平洋到赤道东印度洋附近的海平面气压场偏低,赤道辐合带附近地区的高度场偏低,东亚对流层大气偏暖,西太平洋副热带高压偏东,东亚高空急流偏北,东亚Hadley环流偏弱。在年代际降水偏多时期,PDO处于正位相,情况则与降水偏少时期相反。  相似文献   

20.
We use the coupled climate model MPI-ESM to show that for higher CO2 levels the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) merge into a single mode of Pacific variability, regardless of present-day or Middle Miocene (~15 Ma) topographic boundary conditions. Hence, topographic differences—determining the landscape of past climates—play a smaller role for Pacific variability than previously thought. We attribute the single variability mode to resonance between these two oscillation patterns. In order to estimate the strength of the resonance we compute the spectral power of the ENSO and PDO time series and their coherence. We find that for both Middle Miocene and present-day topographic conditions, higher CO2 forcing leads to stronger resonance between ENSO and PDO. Our results show that (1) stronger CO2 forcing enhances Pacific variability resulting in stronger “atmospheric bridge” and that (2) past climates are likely to exhibit Pacific variability corresponding either to ENSO, PDO, or our proposed single mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号