首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of metamorphic petrology tools and in situ laser 40Ar/39Ar dating on phengite (linking time of growth, compositions and P–T conditions) enables us to identify a detailed P–T–d–t path for the still debated tectonometamorphic evolution of the Nevado‐Filabride complex and infer new geodynamic‐scale constraints. Our data show an isothermal decompression (at 550 °C) from 20 kbar for the Bédar‐Macael unit and 14 kbar for the Calar Alto unit down to c. 3–4 kbar for both units at 2.8 mm year?1. At 22–18 Ma, this first part of the exhumation is followed by a final exhumation at 0.6 mm year?1 along a high‐temperature low‐pressure (HTLP) gradient of c. 60 °C km?1. The age of the peak of pressure is not precisely known but it is shown that it is around 30 Ma and possibly older, which is at variance with recent models suggesting a younger age for high‐pressure (HP) metamorphism. Most of the exhumation is related to late‐orogenic extension from c. 30 to 22–18 Ma. Thus the formation of the main ductile extensional shear zone, the Filabres Shear Zone (FSZ), occurred at 22–18 Ma and is clearly associated with a top‐to‐the‐west shear sense once the FSZ is well localized. The transition from ductile to brittle then occurred at c. 14 Ma. The final exhumation, accommodated by brittle deformation, occurred from c. 14 to 9 Ma and was accompanied, from 12 to 8 Ma, by the formation of nearby extensional basins. The duration of the extensional process is c. 20 Myr which argues in favour of a progressive slab retreat from c. 30 to 9 Ma. The change in the shape of the P–T path at 22–18 Ma together with strain localization along the main top‐to‐the‐west shear zone suggests that this date corresponds to a change in the direction of slab retreat from southwards to westwards.  相似文献   

2.
Partial melting of subducted oceanic crust has been identifiedin the Sierra del Convento mélange (Cuba). This serpentinite-matrixmélange contains blocks of mid-ocean ridge basalt (MORB)-derivedplagioclase-lacking epidote ± garnet amphibolite intimatelyassociated with peraluminous trondhjemitic–tonalitic rocks.Field relations, major element bulk-rock compositions, mineralassemblages, peak metamorphic conditions (c. 750°C, 14–16kbar), experimental evidence, and theoretical phase relationssupport formation of the trondhjemitic–tonalitic rocksby wet melting of subducted amphibolites. Phase relations andmass-balance calculations indicate eutectic- and peritectic-likemelting reactions characterized by large stoichiometric coefficientsof reactant plagioclase and suggest that this phase was completelyconsumed upon melting. The magmatic assemblages of the trondhjemitic–tonaliticmelts, consisting of plagioclase, quartz, epidote, ±paragonite, ± pargasite, and ± kyanite, crystallizedat depth (14–15 kbar). The peraluminous composition ofthe melts is consistent with experimental evidence, explainsthe presence of magmatic paragonite and (relict) kyanite, andplaces important constraints on the interpretation of slab-derivedmagmatic rocks. Calculated P–T conditions indicate counterclockwiseP–T paths during exhumation, when retrograde blueschist-faciesoverprints, composed of combinations of omphacite, glaucophane,actinolite, tremolite, paragonite, lawsonite, albite, (clino)zoisite,chlorite, pumpellyite and phengite, were formed in the amphibolitesand trondhjemites. Partial melting of subducted oceanic crustin eastern Cuba is unique in the Caribbean realm and has importantconsequences for the plate-tectonic interpretation of the region,as it supports a scenario of onset of subduction of a youngoceanic lithosphere during the early Cretaceous (c. 120 Ma).The counterclockwise P–T paths were caused by ensuingexhumation during continued subduction. KEY WORDS: amphibolite; Cuba; exhumation; partial melting; trondhjemite; subduction  相似文献   

3.
A new jadeitite jade locality has been discovered in the serpentinite-matrix subduction mélange of the Sierra del Convento (eastern Cuba) in a context associated with tectonic blocks of garnet-epidote amphibolite, tonalitic–trondhjemitic epidote gneiss, and blueschist. The mineral assemblages of jadeitite jade and jadeite rocks are varied and include combinations of jadeite, omphacite, albite, paragonite, analcime, clinozoisite-epidote, apatite, phlogopite, phengite, chlorite, glaucophane, titanite, rutile, zircon, and quartz formed during various stages in their P–T evolution. Field relationships are obscure, but some samples made almost exclusively of jadeite show evidence of crystallization from fluid in veins. In one of these samples studied in detail jadeite shows complex textural and chemical characteristics (including oscillatory zoning) that denote growth in a changing chemical medium. It is proposed that interaction of an Al–Na rich fluid with ultramafic rocks produced Al–Na–Mg–Ca fluids of varying composition. Episodic infiltration of these fluids, as a result of episodic opening of the veins, developed oscillatory zoning by direct precipitation from fluid and after reaction of fluid with pre-existing jadeite. The latest infiltrating fluids were richer in Mg–Ca, favouring the formation of omphacite and Mg–Ca rich jadeite in open voids and the replacement of earlier jadeite by fine-grained omphacite + jadeite at 550–560°C. This new occurrence of jadeite in Cuba opens important perspectives for archeological studies of pre-Columbian jade artifacts in the Caribbean region.  相似文献   

4.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

5.
北祁连洋早古生代双向俯冲的花岗岩证据   总被引:21,自引:5,他引:21       下载免费PDF全文
笔者主要对北祁连山中段的牛心山岩体、民乐窑沟岩体进行了锆石SHRIMP定年研究。结果表明:牛心山花岗岩的年龄为476Ma,民乐窑沟花岗闪长岩的年龄为463Ma。岩石地球化学显示.两岩体均具有大陆活动边缘的岩浆作用特征,结合岩体产出的区域构造位置及区域地质资料,笔者认为早古生代北祁连洋板块分别发生了向南、向北俯冲,其中向南俯冲形成牛心山花岗岩(476Ma),向北俯冲,形成了民乐窑沟花岗岩侵入体(463Ma)。  相似文献   

6.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   


7.
High‐pressure (HP) metabasites from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origin and evolution of the Northern Caribbean boundary plate during the Cretaceous, in a global subduction context. Geochemical and petrological studies of these eclogites reveal two groups with contrasting origins and pre‐subduction metamorphic histories. Eclogites collected from exotic blocks within serpentinite (mélange zone) originated from a N‐MORB type protolith, do not record pre‐eclogitic metamorphic history. Conversely eclogites intercalated in Jurassic metasedimentary rocks (non‐mélange zone) have a calc‐alkaline arc‐like origin and yield evidence for a pre‐subduction metamorphic event in the amphibolite facies. However, all the studied Escambray eclogites underwent the same eclogitic peak (around 600 °C at 16 kbar), and followed a cold thermal gradient during their exhumation (estimated at around 13.5 °C km?1), which can suggest that this exhumation was coeval with subduction. Concordant geochronological data (Rb/Sr and Ar/Ar) support that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 70 Ma by top to SW thrusting. The retrograde trajectory of these rocks suggests that the north‐east subduction of the Farallon plate continued after 70 Ma. The set‐off to the exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematics. The contrasting origin and ante‐subduction history of the analysed samples imply that the Escambray massif consists of different geological units that evolved in different environments before their amalgamation during exhumation to form the present unit III of the massif.  相似文献   

8.
Abstract 40Ar/39Ar data collected from hornblende, muscovite, biotite and K-feldspar constrain the P-T-t history of the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. These data show two periods of rapid cooling, the first between c. 500 and c. 325° C at rates ≥25° C Ma-1, and the second between c. 250 and c. 200°C. For high-T cooling, 40Ar/39Ar ages are spatially disparate and depend on metamorphic grade: rocks that record deeper and hotter peak metamorphic conditions have younger 40Ar/39Ar ages. Sillimanite- and kyanite-grade rocks in the south-central part of the complex cooled latest: 40Ar/39Ar Hbl = 73–77 Ma, Ms = 67–70 Ma, Bt = 68 Ma, and oldest Kfs = 65 Ma. Thermobarometry and P-T path studies of these rocks indicate that maximum burial of 26–30 km at 575–625° C may have been followed by as much as 10 km of exhumation with heating of 25–50° C. Staurolite-grade rocks have intermediate 40Ar/39Ar ages: Hbl = 84–86 Ma, Ms = 71 Ma, Bt = 72–75 Ma, and oldest Kfs = 80 Ma. Thermobarometry on these rocks indicates maximum burial of 19–26 km at temperatures of 550–580° C. Garnet-grade rocks have the oldest ages: Ms = 72 Ma and oldest Kfs = 91 Ma; peak P-T conditions were 525–550° C and 5–7 kbar. Regional metamorphic temperatures for greenschist facies rocks south of the Beagle Channel did not exceed c. 300–325° C from 110 Ma to the present, although the rocks are only 2 km from kyanite-bearing rocks to the north. One-dimensional thermal models allow limits to be placed on exhumation rates. Assuming a stable geothermal gradient of 20–25° C km-1, the maximum exhumation rate for the St-grade rocks is c. 2.5 mm yr-1, whereas the minimum exhumation rate for the Ky + Sil-grade rocks is c. 1.0 mm yr-1. Uniform exhumation rates cannot explain the disparity in cooling histories for rocks at different grades, and so early differential exhumation is inferred to have occurred. Petrological and geochronological comparisons with other metamorphic complexes suggest that single exhumation events typically remove less than c. 20 km of overburden. This behaviour can be explained in terms of a continental deformation model in which brittle extensional faults in the upper crust are rooted to shallowly dipping ductile shear zones or regions of homogeneous thinning at mid- to deep-crustal levels. The P-T-t data from Cordillera Darwin (1) are best explained by a ‘wedge extrusion’model, in which extensional exhumation in the southern rear of the complex was coeval with thrusting in the north along the margin of the complex and into the Magallanes sedimentary basin, (2) suggest that differential exhumation occurred initially, with St-grade rocks exhuming faster than Ky + Sil-grade rocks, and (3) show variations in cooling rate through time that correlate both with local deformation events and with changes in plate motions and interactions.  相似文献   

9.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   

10.
Based on new evidence the Sulu orogen is divided from south‐east to north‐west into high‐pressure (HP) crustal slice I and ultrahigh‐pressure (UHP) crustal slices II and III. A combined set of mineral inclusions, cathodoluminescence images, U‐Pb SHRIMP dating and in situ trace element and Lu‐Hf isotope analyses was obtained on zircon from orthogneisses of the different slices. Zircon grains typically have three distinct domains that formed during crystallization of the magmatic protolith, HP or UHP metamorphism and late‐amphibolite facies retrogression, respectively: (i) oscillatory zoned cores, with low‐pressure (LP) mineral inclusions and Th/U > 0.38; (ii) high‐luminescent mantles (Th/U < 0.10), with HP mineral inclusions of Qtz + Grt + Arg + Phe + Ap for slice I zircon and Coe + Grt + Phe + Kfs + Ap for both slices II and III zircon; (iii) low‐luminescent rims, with LP mineral inclusions and Th/U < 0.08. Zircon U‐Pb SHRIMP analyses of inherited cores point to protolith ages of 785–770 Ma in all seven orthogneisses. The ages recorded for UHP metamorphism and subsequent retrogression in slice II zircon (c. 228 and c. 215 Ma, respectively) are significantly older than those of slice III zircon (c. 218 and c. 202 Ma, respectively), while slice I zircon recorded even older ages for HP metamorphism and subsequent retrogression (c. 245 and c. 231 Ma, respectively). Moreover, Ar‐Ar biotite ages from six paragneisses, interpreted as dating amphibolite facies retrogression, gradually decrease from HP slice I (c. 232 Ma) to UHP slice II (c. 215 Ma) and UHP slice III (c. 203 Ma). The combined data set suggests decreasing ages for HP or UHP metamorphism and late retrogression in the Sulu orogen from south‐east to north‐west. Thus, the HP‐UHP units are interpreted to represent three crustal slices, which underwent different subduction and exhumation histories. Slice I was detached from the continental lithosphere at ~55–65 km depth and subsequently exhumed while subduction of the underlying slice II continued to ~100–120 km depth (UHP) before detachment and exhumation. Slice III experienced a similar geodynamic evolution as slice II, however, both UHP metamorphism and subsequent exhumation took place c. 10 Myr later. Magmatic zircon cores from two types of orthogneiss in UHP slices II and III show similar mid‐Neoproterozoic crystallization ages, but have contrasting Hf isotope compositions (εHf(~785) = ?2.7 to +2.2 and ?17.3 to ?11.1, respectively), suggesting their formation from distinct crustal units (Mesoproterozoic and Paleoproterozoic to Archean, respectively) during the breakup of Rodinia. The UHP and the retrograde zircon domains are characterized by lower Th/U and 176Lu/177Hf but higher 176Hf/177Hf(t) than the Neoproterozoic igneous cores. The similarity between UHP and retrograde domains indicates that late retrogression did not significantly modify chemical and isotopic composition of the UHP metamorphic system.  相似文献   

11.
The Makbal Complex in the northern Tianshan of Kazakhstan and Kyrgyzstan consists of metasedimentary rocks, which host high‐P (HP) mafic blocks and ultra‐HP Grt‐Cld‐Tlc schists (UHP as indicated by coesite relicts in garnet). Whole rock major and trace element signatures of the Grt‐Cld‐Tlc schist suggest a metasomatized protolith from either hydrothermally altered oceanic crust in a back‐arc basin or arc‐related volcaniclastics. Peak metamorphic conditions of the Grt‐Cld‐Tlc schist reached ~580 °C and 2.85 GPa corresponding to a maximum burial depth of ~95 km. A Sm‐Nd garnet age of 475 ± 4 Ma is interpreted as an average growth age of garnet during prograde‐to‐peak metamorphism; the low initial εΝd value of ?11 indicates a protolith with an ancient crustal component. The petrological evidence for deep subduction of oceanic crust poses questions with respect to an effective exhumation mechanism. Field relationships and the metamorphic evolution of other HP mafic oceanic rocks embedded in continentally derived metasedimentary rocks at the central Makbal Complex suggest that fragments of oceanic crust and clastic sedimentary rocks were exhumed from different depths in a subduction channel during ongoing subduction and are now exposed as a tectonic mélange. Furthermore, channel flow cannot only explain a tectonic mélange consisting of various rock types with different subduction histories as present at the central Makbal Complex, but also the presence of a structural ‘dome’ with UHP rocks in the core (central Makbal) surrounded by lower pressure nappes (including mafic dykes in continental crust) and voluminous metasedimentary rocks, mainly derived from the accretionary wedge.  相似文献   

12.
The Day Nui Con Voi belt in Vietnam is the southeasternmost part of the Red River shear zone in Asia. It is a narrow high-grade metamorphic core complex consisting of garnet–sillimanite–biotite gneisses, mylonite bands, amphibolite layers and migmatites. Geothermobarometric study of the complex revealed that the peak metamorphism took place under amphibolite-facies conditions of 690−60+30°C and 0.65±0.15 GPa and the subsequent mylonitization occurred under greenschist-facies conditions of 480°C and under 0.3 GPa. Fifteen synkinematic hornblende and biotite separates from gneisses, amphibolites and mylonites were dated with the K/Ar method. Hornblende separates from the Day Nui Con Voi give K–Ar ages of 26.4–28.5 Ma, and the biotite separates do give 24.5–24.7 Ma. Combination of thermobarometric and geochronological data yields the cooling history of 500°C at 28 Ma and 300°C at 24 Ma with a cooling rate of 70–110°C Ma−1, and 23 km post-metamorphic exhumation of the core complex. The first 16 km exhumation from the peak of metamorphism (at probably 31 Ma) to 28 Ma was triggered by the left-lateral strike-slip displacement of the Red River shear zone.  相似文献   

13.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

14.
Abstract Standard petrographic, microthermometric and Raman spectroscopic analyses of fluid inclusions from the metamorphosed massive sulphide deposits at Ducktown, Tennessee, indicate that fluids with a wide range of compositions in the C–O–H–N–S–salt system were involved in the syn- to post-metamorphic history of these deposits. Primary fluid inclusions from peak metamorphic clinopyroxene contain low-salinity, H2O–CH4 fluids and calcite, quartz and pyrrhotite daughter crystals. Many of these inclusions exhibit morphologies resembling those produced in laboratory experiments in which confining pressures significantly exceed the internal pressures of the inclusions. Secondary inclusions in metamorphic quartz from veins, pods, and host matrix record a complex uplift history involving a variety of fluids in the C–O–H–N–salt system. Early fluids were generated by local devolatilization reactions while later fluids were derived externally. Isochores calculated for secondary inclusions in addition to the chronology of trapping and morphological features of primary and secondary fluid inclusions suggest an uplift path which was concave toward the temperature axis over the P–T range 6–3 kbar and 550–225° C. Immiscible H2O–CH4–N2–NaCl fluids were trapped under lithostatic to hydrostatic pressure conditions at 3–0.5 kbar and 215 ± 20° C. Entrapment occurred during Alleghanian thrusting, and the fluids may have been derived by tectonically driven expulsion of pore fluids and thermal maturation of organic material in lower-plate sedimentary rocks which are thought to underlie the deposits. Episodic fracturing and concomitant pressure decreases in upper-plate rocks, which host the ore bodies, would have allowed these fluids to move upward and become immiscible. Post-Alleghanian uplift appears to have been temperature-convex. Uplift rates of 0.10–0.05 mm year?1 from middle Ordovician to middle Silurian – late Devonian, and 0.07–0.12 mm year?1 from middle Silurian – late Devonian to late Permian are suggested by our uplift path and available geochronological data.  相似文献   

15.
宋明春  赵庆龄 《地质通报》2004,23(12):1254-1258
对苏鲁超高压变质带日照官山地区侵入于榴辉岩中的原生块状闪长玢岩进行了锆石SHRIMP年龄分析。结果显示,数据点构成的不一致线与一致线上交点年龄为(876±62)Ma,下交点年龄为(201±20)Ma。上交点年龄为残余锆石年龄,下交点年龄大致代表了闪长玢岩的形成时代。苏鲁超高压变质带中存在较广泛的印支期岩浆热事件。假定超高压变质作用发生于228Ma,推算出闪长玢岩侵位前超高压变质岩的折返速率大致为3.63mm/a,闪长玢岩侵位后超高压变质岩的折返(剥蚀)速率大致为0.03mm/a。  相似文献   

16.
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age o  相似文献   

17.
The Amassia–Stepanavan blueschist-ophiolite complex of the Lesser Caucasus in NW Armenia is part of an Upper Cretaceous-Cenozoic belt, which presents similar metamorphic features as other suture zones from Turkey to Iran. The blueschists include calcschists, metaconglomerates, quartzites, gneisses and metabasites, suggesting a tectonic mélange within an accretionary prism. This blueschist mélange is tectonically overlain by a low-metamorphic grade ophiolite sequence composed of serpentinites, gabbro-norite pods, plagiogranites, basalts and radiolarites. The metabasites include high-P assemblages (glaucophane–aegirine–clinozoisite–phengite), which indicate maximal burial pressure of ∼1.2 GPa at ∼550°C. Most blueschists show evidence of greenschist retrogression (chlorite—epidote, actinolite), but locally epidote-amphibolite conditions were attained (garnet—epidote, Ca/Na amphibole) at a pressure of ∼0.6 GPa and a temperature of ∼500°C. This LP–MT retrogression is coeval with exhumation and nappe-stacking of lower grade units over higher grade ones. 40Ar/39Ar phengite ages obtained on the high-P assemblages range between 95 and 90 Ma, while ages obtained for epidote-amphibolite retrogression assemblages range within 73.5–71 Ma. These two metamorphic phases are significant of (1) HP metamorphism during a phase of subduction in the Cenomanian–Turonian times followed by (2) exhumation in the greenschist to epidote-amphibolite facies conditions during the Upper Campanian/Maastrichtian due to the onset of continental subduction of the South Armenian block below Eurasia.  相似文献   

18.
Abstract Edenite/tremolite and edenite/magnesio-hornblende in equilibrium with plagioclase, chlorite, epidote, quartz and vapour involve several types of reactions for which K D can be related to T and P. Thermodynamic calculation of these equilibria leads to isopleth systems. Given knowledge of the progressive changes of end-member activities in zoned Ca–Mg amphiboles (based on microprobe analyses), it is possible to construct precise pressure–temperature–time paths ( P–T–t paths) which have been followed by metabasites during polyphase metamorphism. When applied to basic rocks from the River Vilaine area, this method allows us to construct a P–T–t path that can be compared directly to the P–T–t path constructed from interbedded acid rocks (aluminous micaschists) in the same structural unit. Through time, both basic and acid rocks underwent the same complex deformation history that can be described conveniently in the L–S fabric system of Flinn. This allows us to construct a P–T–t deformation path for this structural unit.
These paths are interpreted in terms of an under/overthrusting continental collision belt (the Hercynian belt), and represent an illustration of the time delay caused by stacking of more than two crustal units.  相似文献   

19.
黑龙江杂岩构造折返的岩石学与年代学证据   总被引:3,自引:9,他引:3  
赵亮亮  张兴洲 《岩石学报》2011,27(4):1227-1234
黑龙江杂岩主要出露在佳木斯地块西缘,沿牡丹江断裂分布,为佳木斯地块与松嫩地块拼合过程中形成的构造混杂岩。杂岩以强烈变形的糜棱岩为主体,其中含有大量规模不等、变形程度不同的变橄榄岩、变辉长岩、蓝闪石片岩(变玄武岩)及变硅质岩和大理岩等岩块或岩片。蓝闪石片岩岩块多经强烈的构造置换呈宽度和延伸有限的条带或岩片与长英质糜棱岩相间分布,发育以青铝闪石、冻蓝闪石、黑硬绿泥石、多硅白云母和钠长石等为代表的新生变质矿物组合,变形叶理呈北东向展布。但在局部地区仍保存有规模较大,且未受变形作用改造的蓝闪石片岩岩块,以不定向生长的蓝闪石、钠长石和绿帘石变质矿物组合为特征。块状蓝闪石片岩边部变形特征明显,变形叶理与周围糜棱岩叶理产状一致。岩块与变形岩石的组构关系表明,黑龙江杂岩至少经历了两期重要的变质事件,即以蓝闪石片岩岩块为代表的早期高压变质事件和以糜棱岩为代表的晚期变质-变形事件。在桦南地区长英质糜棱岩中获得的白云母40Ar/39Ar年龄分别为176.5±1.9Ma和184.5±2.1Ma,该年龄在黑龙江杂岩的变形岩石中普遍存在。鉴于蓝闪石片岩岩块被这一变质-变形事件所改造,以及变质矿物组合由高压向低压的转变关系,表明黑龙江杂岩在早-中侏罗世经历了一次快速的构造抬升事件。这一事件不但使佳木斯地块西缘以蓝片岩为代表的俯冲杂岩发生构造折返,而且对该区晚中生代盆地的形成与演化起着重要的控制作用。  相似文献   

20.
松多地区的区域构造变形与糜棱质白云母石英片岩和绿片岩的白云母单矿物40Ar-39Ar年代学测试表明拉萨地体内的松多地区于220~240 Ma经历过印支期碰撞造山事件.这次造山事件为晚二叠世松多榴辉岩带代表的古特提斯洋盆消失闭合之后北拉萨地体与南冈瓦那大陆碰撞的结果.该区榴辉岩与退变榴辉岩白云母和角闪石的40Ar-39A...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号