首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
光纤传感技术具有精度高、灵敏度高的特点,在变形测量方面具有独特优势。但由于缺乏有效的封装保护技术,目前将光纤传感器用于土工合成材料变形监测的应用和研究比较少。文章通过对光纤传感器的封装结构进行设计,较好地解决了光纤传感器与被测物体间的协调变形问题,并延长了光纤传感器的使用寿命。基于此封装结构,通过室内土工格栅加筋边坡模型试验,选取土工格栅的加筋层数及筋材的布设方式作为变量,研究了土工格栅在加筋过程中的变形及受力特性。研究结果表明:在垂直方向上,上层筋材的应变大于下层筋材的应变;在水平方向上,单层变形最大处位于加载点正下方范围内。增加加筋层数,能够使得各层格栅的变形得到分担,同时有效限制坡面的法向位移,尤其是坡面中上部分的法向位移;土工格栅能够显著提高边坡的极限承载力。通过对光纤传感器的研究,表明其能够灵敏监测被测物体的微小变形与受力,实际使用中较为稳定,验证了本文封装结构设计的可行性,弥补了传统测量方法的缺陷。  相似文献   

2.
王家全  畅振超  唐毅  唐滢 《岩土力学》2020,41(9):2851-2860
为探究循环动载作用下加筋砾性土填料的动力特性,在不同加筋层数和围压下对加筋砾性土进行了固结不排水动三轴试验,研究加筋层数和围压对加筋砾性土动力特性的影响,并进一步分析了加筋砾性土轴向累积应变发展机制。研究表明:加筋层数增加时,轴向累积应变减小,回弹模量增大,且加筋作用的影响幅度逐渐衰减;增大围压时,土体轴向累积应变减小,回弹模量和动孔压均随之增大;随着加筋层数和振次的增加,滞回曲线逐渐向应力轴靠近,滞回圈面积逐渐减小,土体耗能作用减弱。基于安定理论和间接影响带理论,揭示了加筋作用对轴向累积应变发展的影响机制。建立了能够反映加筋层数的加筋砾性土轴向累积应变预测模型,其条件参数a、b、g与加筋层数呈线性关系,可有效预测循环荷载下加筋砾性土路基沉降变形规律。  相似文献   

3.
土工格栅加筋土地基平板载荷试验研究   总被引:2,自引:0,他引:2  
徐超  胡荣  贾斌 《岩土力学》2013,34(9):2515-2520
在近年来的岩土工程实践中,土工合成材料加筋土技术得到越来越广泛的应用。采用平板载荷板试验方法,进行了多组加筋砂土地基模型试验,监测和分析了不同加筋材料(双向格栅与四向格栅)和加筋层数对土工格栅加筋土地基承载特性的影响。研究结果表明:土工格栅加筋土地基与无筋地基相比,承载性能得到改善,双层加筋明显优于单层加筋;土工格栅加筋限制了浅层地基的侧向变形,相同荷载下地基沉降减小,可恢复变形增大;模型试验中测得加筋材料应变和拉力很小,与土工格栅强度相比,拉伸模量对加筋土地基承载力的贡献更大。  相似文献   

4.
The work at hand deals with the design of the longitudinal spacing among rows of closely spaced large-diameter shafts used to stabilise a precarious slope. The problem under consideration is idealised through a conceptual framework where an unstable mass of an infinitely long slope pushes a stable portion of soil adjacent to shafts, leading to failure along a slip surface passing through the upper end of the reinforcement elements. By exploiting the upper bound theorem of plastic collapse, a closed-form solution is derived for the load required for the failure of the stable mass as a function of geometrical and mechanical parameters of the slope and the soil. Results are validated through physical model tests by means of geotechnical centrifuge. Given the satisfactory agreement between analytical and experimental results, the model is extended to evaluate the safety conditions of the reinforced slope.  相似文献   

5.
高昂  张孟喜  朱华超  姜圣卫 《岩土力学》2016,37(7):1921-1928
为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固定振次循环荷载后极限承载力的变化进行研究。试验表明,土工格室加筋能显著提高地基极限承载力并能显著减小坡顶和坡中临界破坏时的法向累积变形,在加筋间距一定的情况下,加筋层数增加和格室高度增大均可不同程度提高极限承载力并减小临界破坏时坡顶法向累积变形,格室焊距的减小也可在一定程度提高极限承载力,格室焊距对边坡法向变形影响不大;长期循环荷载下固定间距加筋层数对路堤竖向累积沉降量影响不大,而对边坡坡顶法向累积变形有一定影响,格室高度增大和格室焊距减小均可不同程度减小路堤竖向累积沉降量和坡面法向累积变形;越靠近加载点处,路堤土压力值受加筋影响越显著,加筋提高了土体刚度和密实度,使加筋路堤土压力值较无筋路堤明显增大;对于无筋路堤,改变动载幅值和振次均导致振后极限承载力有不同程度的降低,而对于加筋路堤,当动载幅值≥30 kPa或动载振次≥1 000时,振后极限承载力均有不同程度的提高。  相似文献   

6.
Behaviour of Cellular Reinforced Sand Under Triaxial Loading Conditions   总被引:1,自引:0,他引:1  
Cellular reinforcement is a three dimensional reinforcement used for reinforced soil structures. Behaviour of such reinforcement is important for its use in actual practice. Present paper focuses on the behavior of cellular reinforcement in sand under the triaxial loading conditions. Series of triaxial tests are performed on unreinforced and reinforced sand with single layer as well as double layers of cellular reinforcements with 75 mm sample diameter. Six different reinforcement heights of cellular reinforcements (varying from 3 to 50 mm) are used along with one sheet reinforcement of thickness 1 mm. From the experimental failure patterns of the triaxial samples, multiple zones of failure are observed as an effect of cellular reinforcement. Deviator stress–strain curves are studied for single and double layers of cellular reinforcement under three different confining pressures. Peak deviator stress is found increasing with increasing height of cellular reinforcement, which shows the confining effect of cellular reinforcement. Shear strength parameters are evaluated and are found increasing with increase in height of cellular reinforcement, also cellular reinforcement with heights 10 mm and more have showed increased shear strength parameters, as compared to 1 mm thick sheet reinforcement. This assures better behavior performance of cellular reinforcement over the planar one. Failure patterns are also visualized by finite element analysis and found in accord with experimental observations Horizontal displacement for reinforced samples visualized multi-zoned failure pattern. Finite element results for deviator stress–strain relationship are found in reasonably good accord with experimental results.  相似文献   

7.
段君义  杨果林  胡敏  邱明明  俞昀 《岩土力学》2020,41(7):2333-2341
加筋垫层由于具有诸多优点而被广泛应用于反复加卸载作用下公路、铁路路基等工程构筑物中。为研究加卸载作用下加筋垫层结构的变形特征,针对加筋与未加筋垫层2组模型,开展了单次加卸载静力试验。测试并获得了不同荷载作用下垫层竖向变形、筋材应变变化规律,对比分析了加筋与未加筋垫层的变形特征,并从能量角度对加筋垫层工作机制进行了探讨。结果表明:与未加筋情况相比,荷载作用下加筋垫层(加载板处)的沉降变形和残余变形更小。加筋后垫层表面(加载板范围外)的竖向变形及其受影响范围均增大,且在卸载过程中垫层表面竖向变形的水平分布曲线特征由“凹”型变为“凸”型,其加卸载曲线呈“∞”型。格宾网筋材应变沿横向呈现非均匀分布特点,其最大应变小于0.06%,筋材始终处于弹性变形状态。加筋垫层中筋材具有储存、释放及横向传递应变能效应,这使得加筋后垫层具有更好的承载能力与弹性性能,进而可降低循环加卸载作用下垫层的塑性变形或累计变形。  相似文献   

8.
高昂  张孟喜  刘芳  梁勇 《岩土力学》2016,37(8):2213-2221
目前对土工格室加筋路堤研究主要集中在静载条件下,动载条件下研究的比较少。为研究分级循环荷载下土工格室加筋路堤的力学性能,采用USTX-2000的动力加载装置进行加载,对土工格室加筋路堤在不同加筋层数、格室高度、格室焊距等工况下进行一系列模型试验。对分级循环荷载下路堤的竖向变形和坡面法向变形进行研究,并与固定振幅循环荷载及静载作用下的路堤进行对比分析,研究不同加载方案路堤力学性能的差异性。试验结果表明,土工格室加筋能显著提高路堤承受分级循环荷载的能力和减小竖向累积沉降量,在加筋间距一定的情况下,两层及以上加筋效果比单层加筋效果更显著,格室高度增大和格室焊距减小均可不同程度提高路堤承受分级循环荷载能力并减小竖向累积沉降量;加筋可减小路堤分级循环荷载下的坡面法向变形,格室高度增大和格室焊距减小在分级循环荷载幅值相同时均能减小坡顶和坡中处的法向累积变形;分级循环荷载作用下,当振次≥8 000或幅值≥80 kPa时,路堤竖向累积沉降量超过固定振幅循环荷载,当振次≥9 000或振幅≥90 kPa时,路堤坡顶法向累积变形超过固定振幅循环荷载;分级循环荷载作用下,路堤竖向和坡面法向累积变形均大于静载,加筋可有效减小分级循环荷载和静载作用下坡面法向累积变形差。  相似文献   

9.
Sinkholes can occur on land underlain by dolomite and cause substantial damage to buildings and even loss of life. More than four million people work or reside on dolomite land in South Africa and it is therefore important to be able to construct safely on dolomite land and to minimise the risk of damage to infrastructure and loss of life. Compacted soil mattresses are often used to found structures on areas underlain by dolomite. This study investigated the effect of tensile reinforcement on the behaviour of a soil mattress spanning an underlying water filled cavity designed to impose a cover subsidence sinkhole. Three small-scale models, each consisting of a soil mattress with a cover subsidence sinkhole forming underneath, were constructed and tested in a geotechnical centrifuge. In the first test, an unreinforced soil mattress was tested and in two more tests, reinforced soil mattresses with different reinforcement strengths were tested. The settlement of the unreinforced soil mattress was initially less than that of the reinforced soil mattresses up to the point at which it failed suddenly. Neither of the reinforced soil mattresses failed suddenly, but both experienced large surface settlements that would have led to substantial damage to an overhead structure.  相似文献   

10.
了解加筋土边坡的破坏形式有助于加筋土边坡的设计和施工监测。对不同形式的加筋土边坡进行离心模型试验,绘制了边坡的破坏形式。试验结果表明:加筋土边坡能够保持较好的整体性,一般不会像未加筋边坡那样突然坍塌; 坡面附近土体内部可能先于坡顶产生裂缝,因此在实际工程中观察到显著的坡顶裂缝后,应当意识到在坡面附近的坡体内部也可能产生了裂缝。一般情况下筋材模量越大加筋效果越好,但在筋材和土接触面强度一定的情况下,筋材模量增大到一定程度后继续增大筋材模量是没有太大意义的。  相似文献   

11.
12.
For many years ago, the beneficial effects of using reinforcement to improve the property of soil have been demonstrated. Over the last three decades, the use of polymeric reinforcement such as geotextile has increased in geotechnical engineering. Among the possible applications, earth reinforcement techniques have become useful and economical techniques to solve many problems in geotechnical engineering practice, such as improve the bearing capacity and settlement characteristics of the footing. This research presents the effect of geotextile inclusion on the bearing capacity of two close strip footings located at the surface of soft clay. A broad series of finite element analysis were performed on two footings with width of 1 and 2 m using two-dimensional plane strain model using the computer code Plaxis (ver 8). Only one type of soft clay was used for the analysis, and the soil was represented by two yielding criteria including hardening soil model and Mohr–Coulomb model, while reinforcement was represented by elastic element, and at the interface between the reinforcements and soft clay, interface elements have been used. A wide range of boundary conditions, including unreinforced and reinforced cases, was analyzed by varying parameters such as number of geotextile layers, vertical spacing of layers, depth to topmost layer of geotextile, tensile stiffness of geotextile layers, and distance of between two footings. From numerical results, the bearing capacity ratio and the interference factor of the foundations have been estimated. On the basis of the analysis performed in this research, it can be concluded that there is a best distance between footings and optimum depth for topmost layer to achieve maximum bearing capacity for closely spaced strip footings. The bearing capacity was also found to increase with increasing number of reinforcement layers if the reinforcements were placed within a range of effective depths. In addition, the analysis indicated that increasing reinforcement stiffness beyond a threshold value does not result in a further increase in the bearing capacity.  相似文献   

13.
Vegetation has been previously proposed as a method for protecting artificial and natural slopes against shallow landslides (e.g. as may be triggered by an earthquake); however, previous research has concentrated on individual root soil interaction during shear deformation rather than the global slope behaviour due to the extreme expense and difficulty involved in conducting full-scale field tests. Geotechnical centrifuge modelling offers an opportunity to investigate in detail the engineering performance of vegetated slopes, but its application has been restricted due to the lack of availability of suitable root analogues that can repeatably replicate appropriate mechanical properties (stiffness and strength) and realistic 3D geometry. This study employed 3D printing to develop a representative and repeatable 1:10 scale model of a tree root cluster (representing roots up to 1.5 m deep at prototype scale) that can be used within a geotechnical centrifuge to investigate the response of a vegetated slope subject to earthquake ground motion. The printed acrylonitrile butadiene styrene (ABS) plastic root model was identified to be highly representative of the geometry and mechanical behaviour (stiffness and strength) of real woody root systems. A programme of large direct shear tests was also performed to evaluate the additional strength provided by the root analogues within soil that is slipping and investigate the influence of various characteristics (including root area ratio (RAR), soil confining effective stress and root morphology) on this reinforcing effect. Our results show that root reinforcement is not only a function of root mechanical properties but also depends on factors including surrounding effective confining stress (resulting in depth dependency even for the same RAR), depth of the slip plane and root morphology. When subject to shear loading in soil, the tap root appeared to structurally transfer load within the root system, including to smaller and deeper roots which subsequently broke or were pulled out. Finally, the root analogues were added to model slopes subjected to earthquake ground motion in the centrifuge, where it was revealed that vegetation can substantially reduce earthquake-induced slope deformation in the soil conditions tested (76% reduction on crest permanent settlement during slippage). Both the realistic 3D geometry and highly simplified root morphologies, as characterised mechanically by the shear tests, were tested in the centrifuge which, despite exhibiting very different levels of additional strength in the shear tests, resulted in very similar responses of the slopes. This suggests that once a certain minimum level of reinforcement has been reached which will alter the deformation mechanism within the slope, further increases of root contribution (e.g. due to differences in root morphology) do not have a large further effect on improving slope stability.  相似文献   

14.
This paper presents the results of a research program conducted on the geotechnical centrifuge to investigate contaminant transport mechanism through the soil mass. The mechanism that governs contaminant transport through soil mass is discussed, the principles of geotechnical centrifuge modelling are outlined, and relevant scaling laws that govern the relationship between a centrifuge model and the prototype, with respect to the problem of contaminant transport, are presented. Modelling of models has been established to validate the experimental results. It has been concluded that the geotechnical centrifuge can be used as an experimental tool to simulate field scale problems.  相似文献   

15.
This paper presents the results of triaxial tests conducted for the investigation of the influence of geotextile on both the stress–strain and volumetric change behavior of reinforced sands. Tests were carried out on loose sand. The experimental program includes drained compression tests on samples reinforced with different values of both geotextile layers (1 ≤ Ng ≤ 3) and confining pressure (\(\upsigma_{\text{c}}^{\prime }\)) varying from 50 to 200 kPa. Tests show that the contribution of geotextile is negligible until an axial strain threshold that range between 2.5% for a confining pressure of 50 kPa to lower than 1% for 100 and 200 kPa confining pressure. At higher values of εa, geotextile induces a quasi-linear increase in the stress deviator (q) and volume contraction in the reinforced sand. Tests show a negligible influence of the number of geotextile layers (Ng) on the contribution of geotextile to both stress–strain and volumetric change, when normalized with Ng. Tests also show that the contribution of geotextile to the stress–strain mobilization augments with the increase in the confining pressure, while its contribution to the volume contraction decreases with the increase in the confining pressure. The reinforced soil becomes contracting in the case of 2 and 3 geotextile layers.  相似文献   

16.
Municipalities and recycling and environmental authorities are concerned about the growing amount of carpet waste produced by household, commercial and industrial sectors. It is reported that 500,000 tonnes of carpet waste fibre are plunged into landfills annually in the UK. In the United States of America, around 10 million tonnes of textile waste was generated in 2003. In geotechnical engineering, expansive clay soils are categorised as problematic soils due to their swelling behaviour upon increase in the moisture content. The problematic nature of such soils is intensified with the increase in the plasticity index. This paper presents results of a comprehensive investigation into utilisation of carpet waste fibres in order to improve the swelling characteristics of compacted cohesive soils. Therefore, two different clay soils with markedly different plasticity indices (i.e. 17.0 and 31.5 %) were treated with two different types of carpet waste fibre. Waste fibres were added to prepare specimens with fibre content of 1, 3 and 5 % by dry weight of soil. Soil specimens with different dry unit weights and moisture contents were prepared so as to the swelling behaviour of fibre reinforced compacted clays is completely attained under various scenarios. The results indicated that the behaviour of the fibre reinforced soils seems highly dependent on the initial compaction state and secondary on the moisture content. It was found that the swelling pressure drops rapidly as the percentage of fibre increases in samples prepared at the maximum dry unit weight and optimum moisture content. Reducing the dry unit weight, while maintaining constant moisture content or increasing the moisture content at constant dry unit weight was found to reduce the swelling pressure.  相似文献   

17.
为研究加筋土挡墙在墙顶荷载作用下土体受力和变形形态,通过改变筋材层数、筋材长度和替换加筋材料等方式对加筋土挡墙进行了4种工况的模型试验。对4种工况下的加筋土墙体内竖向土压力、墙面水平位移、墙顶竖向位移和筋材应变等进行对比研究。研究表明,挡墙上部竖向土压力增长较快且各层竖向土压力最大值由加载点下部向墙面处移动;墙顶荷载超过130 kPa时,由于不均匀沉降,第5层筋材对应墙面处有向内收缩趋势,墙面水平位移最大值大约在上三分点位置;整个加载阶段,筋材总体应变值增幅不大且远小于筋材设计应变峰值;增加挡墙内筋材层数和增加筋材长度均可提升挡墙各方面性能,但增加筋材层数提高效果要优于增加筋材长度;使用废旧轮胎代替单向格栅进行加筋可有效提高挡墙整体性能,分散超载引起的附加应力,有效减小墙面水平位移和墙顶竖向位移。  相似文献   

18.
Capturing strain localization in reinforced soils   总被引:2,自引:1,他引:1  
Lade’s single hardening soil model with Cosserat rotation embodied in the finite element method is employed to investigate the behavior of geosynthetic reinforced soils with special attention to the development of shear banding. The ability of the finite element model to detect shear banding in a reinforced soil is examined against three high quality small-scale laboratory plane strain tests on Toyoura sand with and without reinforcement. These three tests were chosen because of the clear failure surfaces that developed in the soil during loading. The FEM analyses were able to reasonably simulate the plane strain laboratory tests including both unreinforced and reinforced cases. The FEM analyses gave reasonably good agreement with the experimental results in terms of global stress–strain relationships and shear band occurrences. Furthermore, and based on FE analyses of a hypothetical geosynthetic reinforced soil (GRS) retaining wall, it is shown that the geosynthetic reinforcements are very effective in hindering the formation of shear bands in GRS retaining walls when small spacing between the reinforcement layers was used. When used properly, the geosynthetic reinforcements made the soil behave as a truly reinforced mass of considerable stiffness and strength.  相似文献   

19.
Luo  Fangyue  Huang  Renlong  Zhang  Ga 《Acta Geotechnica》2020,15(10):3027-3040

A series of centrifuge model tests of geogrid-reinforced slopes with superstructure was conducted under differential settlement condition. The influence of reinforcement placement on the deformation and failure behavior of the slope and superstructure is investigated by considering different numbers of geogrid layers. The response of the slope and superstructure is analyzed based on a full-field displacement measurement via image analysis. The differential settlement induces distinguishable superstructure movement and slope deformation above the subsidence zone. The slope displacement, close to the vertical direction, appears only in a limited zone. An integrated analysis scheme of deformation and failure processes is adopted to reveal the failure mechanism of both the unreinforced and reinforced slopes: a certain level of deformation localization induced by differential settlement results in the local failure, and adversely, the local failure aggravates the deformation localization near it. The geogrid reinforcement mechanism is further clarified as the reduction on the deformation localization of the slope due to geogrid placement. The geogrid reinforcement effect can be comprehensively described with two respects: hooping effect and shielding effect, which illustrates the influence sphere and degree of geogrid reinforcement on restraining the slope deformation. The geogrid reinforcement is proven effective to improve the safety of the slope and superstructure.

  相似文献   

20.
Soil reinforcement through the inclusion of oriented or randomly distributed discrete elements such as fibres has recently attracted increasing attention in geotechnical engineering. Therefore, the purpose of this paper is to investigate the influence of certain parameters (the strength properties of the fibre, the relative size of the fibres and grains, and the rate of shear) on the shear strength of polypropylene fibre reinforced cohesive soils. A series of consolidated drained or undrained direct shear tests were conducted on unreinforced and reinforced sandy silt and silty clay specimens. Two types of polypropylene fibres with different mechanical indices were used. The fibre content was varied between 0.3% and 1.1% by weight of dry soil. The test results revealed that the inclusion of fibres in soil significantly increases the shear strength. The attainment of the high shear strength is attributed to the micromechanisms involved in the fibre/soil interactions as studied through scanning electron micrographs. The results also showed that the reinforcement effect was more pronounced under undrained shearing conditions. An important outcome from the current work is that, from the data obtained, the strength of the reinforced soil composites is not practically affected by the fibre mechanical indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号