首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an accurate characterization of the particle background behaviour on XMM-Newton based on the entire EPIC archive. This corresponds to the largest EPIC data set ever examined. Our results have been obtained thanks to the collaboration between the FP7 European program EXTraS and the ESA R&D ATHENA activity AREMBES. We used as a diagnostic an improved version of the diagnostic which compares the data collected in unexposed region of the detector with the region of the field of view in the EPIC-MOS. We will show that the in Field-of-View excess background is made up of two different components, one associated to flares produced by soft protons and the other one to a low-intensity background. Its origin needs to be further investigated.  相似文献   

2.
ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2–12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.  相似文献   

3.
We present a preliminary assessment of the non-X-ray background for the WFI on board ATHENA conducted at IAAT in the context of the collaborative background and radiation damage working group activities. Our main result is that in the baseline configuration originally assumed for the camera the requirement on the level of non-X-ray background could not be met. In light of the results of Geant4 simulations we propose and discuss a possible optimization of the camera design and pinpoint some open issues to be addressed in the next phase of investigation. One of these concerns the possible contribution to the non-X-ray background from soft protons and ions funneled to the focal plane through the optics. This is not quantified at this stage, here we just briefly report on our ongoing activities aimed at validating the mechanisms of proton scattering at grazing incidence.  相似文献   

4.
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.  相似文献   

5.
Heikki Salo  Jürgen Schmidt 《Icarus》2010,206(2):390-409
We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn’s rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.  相似文献   

6.
A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.  相似文献   

7.
Wang  S.  Wang  X.Y.  Wu  C.S.  Li  Y.  Chao  J.K.  Yeh  T. 《Solar physics》2001,202(2):385-393
In this note a kinetic interaction process between a fast plasmoid ejected by the Sun, which represents another form of CME, and the background solar wind in the corona is discussed. We consider a system which consists of the plasmoid ions moving faster than the solar wind. We are interested in the time evolution of the ion distribution functions due to wave–particle interactions. Simulation results show that both perpendicular and parallel temperatures of the solar wind ions increase when the relative velocity between the plasmoid and the solar wind is sufficiently greater than the Alfvén velocity of the plasmoid ions. We suggest that this process is significant for the heating and acceleration of the solar wind in the low-heliographic latitude regions near the Sun.  相似文献   

8.
We propose a technique for reducing the number of meteors observed at a single ground-based station to estimate the influx rate of meteoric material to the Earth (MAI—meteor activity index). We derive a formula that allows the meteor activity to be objectively estimated from the results of meteor detection by assuming that each meteor belongs to a stream with a uniform spatial particle distribution. As an example, we give meteor activity estimates obtained from the results of meteor detection by a patrol TV camera located at a single station.  相似文献   

9.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

10.
We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ? 10?4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.  相似文献   

11.
To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum–Röntgen–Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5–11 and 8–24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that “arrived” from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10?14 erg s?1 cm?2 (5–11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.  相似文献   

12.
Dissociative recombination (DR) of ionospheric O2+ ions is an important source of suprathermal atomic oxygen in the exosphere as previous studies about the Martian upper atmosphere have shown. Because of the weaker gravitational attraction a hot oxygen corona on Mars should be denser than that observed on Venus. Since the most important mechanism for the production of the hot oxygen atoms in the Martian exosphere is DR, we investigated the variability of this production mechanism depending of solar activity. The Japanese Nozomi spacecraft will have the possibility to detect with the neutral mass spectrometer (NMS) for the first time in-situ the theoretically predicted hot oxygen corona on Mars, if the corona number density above the cold background atmosphere is of the order of 10,000 cm−3. Due to a problem in the propulsion system Nozomi failed its planned arrival rendevouzs with Mars in October 1999 and will, therefore, arrive at the red planet not before January 2004. Solar activity will reach its maximum in 2001, so the related production rate of hot oxygen atoms will be in the medium range during the new arrival date of Nozomi. We used the ionospheric profiles from the Viking mission for low solar activity conditions (F10.7≈70) and the Mariner 9 mission with a solar activity of about 120 for medium solar wind activity. The latter is comparable to the level we expect for the Mars arrival of Nozomi. The resulting influence of the hot oxygen corona number density distribution was calculated with a Monte Carlo technique. This technique is used to compute a hot particle density distribution function. We studied the atomic diffusion process in the Martian atmosphere by simulating the collision probability, particle direction and energy loss after collisions by generating random numbers. Compared to previous studies we have improved the Monte Carlo model by using more and smaller altitude steps and more detailed treatment of particles with a temporary downward motion. This has resulted in an increased amount of collisions and a shift to lower energies in the energy spectrum. Our results show that the hot oxygen component should begin to dominate above the cold background atmosphere at an altitude of about 500 km above the Martian surface. The NMS instrument on board of Nozomi should detect the hot oxygen component after its arrival at Mars in January 2004, at an altitude of about 600 km above the Martian surface. Since the solar activity will decrease during the mission the measurements during the first orbits will be the most significant ones. The first in-situ measurements of the hot oxygen number density would be very important for adjusting atmospheric escape models by separating ballistic, satellite and escape trajectories of the hot oxygen atoms, which are significant for studies of the evolution and solar wind interaction of the Martian atmosphere.  相似文献   

13.
The ‘Mars Energetic Radiation Environment Models’ (dMEREM and eMEREM) recently developed for the European Space Agency are herein used to estimate, for the first time, background Galactic Cosmic Ray (GCR) radiation and flare related solar energetic particle (SEP) events at three candidate martian landing sites under conditions where particle arrival occurred at solar minimum (December, 2006) and solar maximum (April, 2002) during Solar Cycle 23. The three landing sites were selected on the basis that they are characterized by significantly different hydrological conditions and soil compositions. Energetic particle data sets recorded on orbit at Mars at the relevant times were incomplete because of gaps in the measurements due to operational constraints. Thus, in the present study, comprehensive near-Earth particle measurements made aboard the GOES spacecraft were used as proxies to estimate the overall particle doses at each perspective landing site, assuming in each case that the fluxes fell off as 1/r2 (where r is the helio-radial distance) and that good magnetic connectivity always prevailed. The results indicate that the particle radiation environment on Mars can vary according to the epoch concerned and the landing site selected. Particle estimations obtained using MEREM are in reasonable agreement, given the inherent differences between the models, with the related NASA Heavy Ion–Nucleon Transport Code for Space Radiation/HZETRN. Both sets of results indicated that, for short (30 days) stays, the atmosphere of Mars, in the cases of the SEPs studied and the then prevailing background galactic cosmic radiation, provided sufficient shielding at the planetary surface to maintain annual skin and blood forming organ/BFO dose levels below currently accepted ionizing radiation exposure limits. The threat of occurrence of a hard spectrum SEP during Cruise-Phase transfers to/from Mars over 400 days, combined with the associated cumulative effect of prolonged GCR exposure, poses an as yet unsolved hazard to prospective onboard personnel.  相似文献   

14.
This paper presents the results of N-body simulations of moonlets embedded in broad rings, focusing specifically on the saturnian A ring. This work adds to previous efforts by including particle self-gravity and particle size distributions. The discussion here focuses primarily on the features that form in the background particles as a result of the moonlet. Particle self-gravity tends to damp out features produced by embedded moonlets and this damping is enhanced if the moonlet is simply the largest member of a continuous size distribution. Observable features around an embedded moonlet appear to require that the largest ring particles be no more massive than 1/30 the mass of the moonlet. These results, compared with current and future Cassini observations, will provide insight into the nature of the particle population in the saturnian rings. Some time is also spent analyzing the way in which the background particles cluster around the moonlet. The accretion of small particles onto the moonlet can be limited by disruptive collisions with the largest ring particles in the particle size distribution.  相似文献   

15.
Observational results from the supersoft X-ray detector (SD) aboard the spacecraft Shenzhou-2 are briefly described. The resultspertain to cosmic γ-ray bursts solar x-ray bursts, high-energy charged particles and soft X-ray background radiation. The detector is a proportional counter with a polypropylene thin-film window of 50 mm diameter, it operates in the energy range 0.23–3.0keV covered by six energy channels. Two grades of time resolution are used: 40 ms for recording burst events and 520 ms when there is no triggering signal resulted from a burst event. Figures 1 and 2 show the light curves and energy spectra of two cosmic γ-ray bursts (starting time 2001 Jan 17, 09:37:25.21 UT and 2001 Mar 9, 12:33:55.692 UT), and Figures 3 and 4, the results on two solar X-ray burst (2001 Apr 6, 19:14:09.11 UT, and 2001 May 20, 06:02:12.58 UT). The detector records the ambient high-energy charged particles when there is no burst event and the shutter of the window is closed. 110 data sets of high-energy charged particles along the spacecraft orbit have been collected. As examples, the variations of the particle counting rate along the orbit are shown in Figs. 6a, 6b, 8e, 8f and 7. More than 10 events of particle precipitation induced by solar proton events have also been recorded, some of which are displayed in Figs.6c–6f and 7. Some of the data of soft X-ray background radiation shown in Fig. 8 were obtained when the shutter was open, and they are important for the data processing of the burst events.  相似文献   

16.
Neutral planetary exospheres are built up by three different kinds of gas particles, namely ballistic, hyperbolic and elliptic particles. Elliptic particles have their origin exclusively in exospheric regions of the planet where they are fed into satellite orbits by different physical processes. It has been suggested that elliptic particles that do not enter the collision-dominated planetary gas regions represent an important fraction of the particles constituting the outer parts of planetary exospheres. Here we develop a theoretical concept for a rigorous calculation of elliptic particle distributions using Boltzmann equation kinetic approaches. Taking into account realistic gain and loss processes a general procedure for the determination of satellite particle densities for the terrestrial case is presented. We give representative height profiles of the satellite particle density in the exosphere for weak and strong solar activity. Our results are compared with those obtained by simplified theoretical approaches; pronounced deviations are obvious. It is shown that satellite particles are more relevant in low temperature exospheres leading to an order-of-magnitude difference above 1500 km between the densities for weak and strong solar activity. There is a general tendency for satellite particles to become increasingly important with increasing height.  相似文献   

17.
In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.  相似文献   

18.
Comparative Study of MHD Modeling of the Background Solar Wind   总被引:3,自引:0,他引:3  
Knowledge about the background solar wind plays a crucial role in the framework of space-weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, therefore we have to rely on heliospheric models to derive the distribution of solar-wind parameters in interplanetary space. We test the performance of different solar-wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang–Sheeley–Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar-wind speed. However, the predicted arrival times of high-speed solar-wind streams have typical uncertainties of the order of about one day. Comparison of model runs with synoptic magnetic maps from different observatories revealed that the choice of the synoptic map significantly affects the model performance.  相似文献   

19.
The fluxes of energetic particles under the radiation belts are studied using data obtained in the experiments onboard the CORONAS-I and CORONAS-F satelites. The spatial structure of the distributions of proton fluxes with E p > 1 MeV both near the geomagnetic equator on L ≤ 1.2 and at high latitudes on L ~ 3.5–6.5 as well as the particle flux variations with geomagnetic activity are analyzed. The scattering processes that lead to particle precipitation and, in particular, the scattering of protons as they interact with VLF emission and the scattering when the particle motion becomes nonadiabatic are considered. We compare the data on particle dynamics during geomagnetic disturbances of various kinds to determine whether the physical processes that lead to particle precipitation are a manifestation of the geoefficiency of a given magnetic storm or they are controlled by internal magnetospheric conditions.  相似文献   

20.
The effect of background plasma on particle acceleration via Poynting fluxes is studied in 3D PIC simulation of electron-positron and electron-ion plasmas. When a strongly magnetized ejecta at the center expands to low-temperature electron-positron ambient plasma background and a low-density clump, electromagnetic wave front accelerates particles in the background and clump, and captures them in the Ponderomotive potential well. We do not observe any instability, and the momentum distributions of background and clump form a power law of slope close to −1.5 with a sharp peak in the middle. When an ejecta expands to the ion-electron interstellar medium (ISM), the acceleration via Poynting flux is severely damped due to the charge separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号