首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geotechnical and Geological Engineering - The volume of discarded tires continues to increase each year, becoming a major topic of concern for society. Motivated by this environmental issue, this...  相似文献   

2.
It is generally recognized that the low strength and high compressibility are the characteristics of soft soil. In addition to other techniques, reinforcement can also be used in increasing the strength and decreasing the deformation of this kind of soil. The results of an investigation into the effects of a natural fiber on the consolidation and shear strength behavior of Shanghai clayey soil reinforced with wheat straw fibers are presented in this paper. A series of one dimensional consolidation and triaxial tests were conducted on samples of unreinforced and reinforced Shanghai clayey soil with different percentages of randomly distributed wheat straw fibers. The results show that the preconsolidation pressure decreases and the coefficient of swelling and compression generally increase with increasing the fiber content until a optimum content value. Furthermore, the addition of wheat straw fiber leads to a significant increase in shear strength and friction angle of the natural soil and there is an optimum wheat fiber content that makes this increase maximal.  相似文献   

3.
Clayey soils, especially clayey soils with high or very high liquid limits (> 60%) often present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of clay soils can be enhanced by the addition of either cement or lime, thereby producing an improved construction material. In this research, slake durability was related to the liquid limit and unconfined compressive strength of clayey admixtures. Three of the most important components in clay soils, namely, kaolinite, montmorillonite and quartz, were combined to make the clayey admixtures. A slaking value of 45% is suggested as identifying satisfactory stabilization. For clayey admixtures with liquid limit between 40% and 60%, this could be achieved with the addition of between 4% and 12% cement. Clayey admixtures with liquid limits over 60% could only achieve this with large uneconomical amounts of cement (> 12%).  相似文献   

4.
The use of steel slag fines has been fully investigated and developed as it has similar chemical composition and mineralogy to that of Portland cement. Researchers from home and abroad have done lots of research on steel slag, such as its production, processing, properties, mechanical behavior, cementitious property and so on. This paper describes influence of water content on mechanical properties of improved clayey soil using steel slag and a series of tri-axial compression tests are carried out to study the influence of water content to the admixture of clayey soils and steel slag. Through the test data statistics and analysis, the basic rules of the mechanical properties of these mixed soils were gotten, especially, the optimum steel slag and water content. Through tri-axial compression tests, there are several kinds of specimen failure forms in different conditions of steel slag and water content. The stiffness of steel slag is larger than clayey soil, so the specimen with steel slag would break with an oblique angle whereas the clayey soil specimen would be compressed. Drawn from the experiment, while water content increases, cohesion c increases and internal friction angel φ decreases; however, in general, the maximum stress difference firstly increases, and then decreases. Under the same water content, with the curing period and steel slag content increase, cohesion c increases, internal friction angel φ decreases, however, the stress difference increases. By analyzing the specimen failure forms and the relations of stress difference and axial strain, the relations between stress difference max (σ1 ? σ3) and steel slag content and relations between the secant modulus E50 and steel slag content are gotten. It is concluded that when the water content is about 18 % and steel slag content is about 30 %, the stress difference and secant modulus E50 is larger than other cases. Therefore, in soft soil foundation treatment, such steel slag and water content could be chosen in order that the soil strength would be improved. So, judging from the results, the foundation settlement will be reduced by mixing appropriate steel slag and water content.  相似文献   

5.
In this study, the compressive and tensile behavior of polymer treated sulfate contaminated CL soil was investigated. Based on the information in the literature, a field soil was contaminated with up to 4 % (40,000 ppm) of calcium sulfate in this study. In addition to characterizing the behavior of sulfate contaminated CL soil, the effect of treating the soil with a polymer solution was investigated and the performance was compared to 6 % lime treated soil. In treating the soil, acrylamide polymer solution (15 g of polymer dissolved in 85 g of water) content was varied up to 15 % (by dry soil weight). Addition of 4 % calcium sulfate to the soil decreased the compressive and tensile strengths of the compacted soils by 22 and 33 % respectively with the formation of calcium silicate sulfate [ternesite Ca5(SiO4)2SO4)], magnesium silicate sulfate (Mg5(SiO4)2SO4) and calcium-magnesium silicate (merwinite Ca3Mg(SiO4)2). With the polymer treatment the strength properties of sulfate contaminated CL soil was substantially improved. Polymer treated sulfate soils had higher compressive and tensile strengths and enhanced compressive stress–strain relationships compared to the lime treated soils. Also polymer treated soils gained strength more rapidly than lime treated soil. With 10 % of polymer solution treatment, the maximum unconfined compressive and splitting tensile strengths for 4 % of calcium sulfate soil were 625 kPa (91 psi) and 131 kPa (19 psi) respectively in 1 day of curing. Similar improvement in the compressive modulus was observed with polymer treated sulfate contaminated CL soil. The variation of the compacted compressive strength and tensile strength with calcium sulfate concentrations for the treated soils were quantified and the parameters were related to calcium sulfate content in the soil and polymer content. Compressive stress–strain relationships of the sulfate soil, with and without lime and polymer treatment, have been quantified using two nonlinear constitutive models. The constitutive model parameters were sensitive to the calcium sulfate content and the type of treatment.  相似文献   

6.
Industrial waste generation has reached up to millions of tons yearly. One way to solve the problems of the large accumulating amount of waste could be to incorporate it into the soil; thus, finding a way for the use of industrial waste could be a quest for soil improvement studies. Industrial sludge in certain pozzolanic form reacts with soil and possesses cementitious properties. This paper illustrates the utilization of lime, steel and copper sludge in improvement of high plasticity clayey soil. The influence of stabilizer type, different curing times and various ratios of lime to sludge are evaluated by Atterberg limits, standard proctor compaction, unconfined compressive strength and unconsolidated undrained strength in triaxial test. The  test results show that adding lime and sludge results in an increase in maximum strength. Moreover, the strength of soil increases with the increase of curing time. Utilizing stabilizers also influences plasticity index and compaction parameters. Finally, the results demonstrate that steel sludge has better performance than that of copper sludge in term of strength development.  相似文献   

7.
粘性土固结过程中的微结构效应研究   总被引:8,自引:0,他引:8  
从粘性土体结构系统观点出发,建立了土体结构形态概念模型,根据土体具有的非线性特征,运用份形几何理论提出了7项定量表征土体微结构状态的分维指标。在此基础上,以厦门软土为例开展了软土固结构中的微结构变化规律研究,取得了一些成果,从而对软土力学特有了更深层次认只。  相似文献   

8.
The research studies the applicability of two elastoplastic models for the collapse prediction of the lateritic soil profile from Southeastern Brazil. These tropical soils have peculiar geotechnical behavior, due to their mineralogical composition and porous structure coming from intense process of formation. Two elastoplastic models were analyzed: the Barcelona Basic Model (BBM) and another one based on BBM, however developed for tropical soils. Oedometric tests with suction control were performed at three distinct depths of the soil profile. The BBM was not suitable for the upper layer of the soil profile, because BBM considers the compressible behavior of the soil in function of the reduction of the elastoplastic compressibility index with the increase of the matric suction. The model developed for tropical soils showed better suited to the compressible behavior of the soil profile, resulting in good prediction of the collapse potential, mainly by accepting increasing values of the elastoplastic compressibility index of the soil profile with the matric suction rise.  相似文献   

9.
碎石桩处理砂性土和粘性土的机理探讨   总被引:4,自引:0,他引:4  
叶观宝  胡斌 《岩土工程技术》2002,(3):172-174,179
在对江苏省徐宿高速公路碎石桩施工质量的检测中,利用现场检测得到的第一手资料,结合室内土工试验及文献资料,探讨碎石桩处理砂性土和粘性土的机理.  相似文献   

10.
Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers   总被引:1,自引:1,他引:1  
Soft soils are well known for their low strength and high compressibility. Several techniques, including reinforcement, are commonly used to increase the strength and decrease the deformation of this kind of soil. This paper presents the results of an investigation into the effects of fiber on the consolidation and shear strength behavior of a clay soil reinforced with nylon fibers. A series of one dimensional consolidation and triaxial tests were conducted on samples of unreinforced and reinforced clay with different percentages of randomly distributed nylon fibers. The results show that the preconsolidation pressure decreases and the coefficient of swelling and compression generally increase with increasing the fiber content. Furthermore, the addition of the fiber leads to a significant increase in shear strength and friction angle of the natural soil.  相似文献   

11.
河南刘河煤矿矿二1煤层上为厚度20~40m的第四系覆盖层,其中黏土层平均厚度为6.6m。由于第四系孔隙水含水组的四个含水段均为富水性中等及以上含水层,所以该层黏性土在受到上覆高压影响后能否控制顶板突水显得尤为关键,是解决新生界含水层下的安全开采的关键问题。通过室内实验测得该矿深度约在150m的4个钻孔土样的物理参数和土颗粒级配分析,按实验结果模拟深层黏性土,考虑受力面积、含水率和厚度3个影响黏性土破坏的主要因素,利用正交实验原理安排实验。结果表明,受力面积和含水率越大,黏性土的破坏程度增大;黏性土的厚度越大,破坏程度相应减小;3个因素中,受力面积的影响最大;当黏性土含水率在10%~25%,受力面积越小,厚度越大,黏性土不易发生破坏。该研究对预防和保证矿山安全生产具有重要意义。  相似文献   

12.
13.
粘性土在不同温度下龟裂的发展及其机理讨论   总被引:5,自引:0,他引:5  
通过试验,研究了粘性土在不同温度下龟裂的发生和发展规律,运用计算机图像处理和编程技术,对不同温度下获得的粘性土龟裂网络的几何结构和形态特征进行了定量分析。结果表明:龟裂的发展过程可分为四个阶段,温度效应十分明显。温度越高,龟裂形貌越简单,龟裂条纹越宽,而在较低的温度下,龟裂的形貌比较复杂,龟裂条纹纤细且间距较密,表面比较破碎;从粘土矿物双电层理论对龟裂的形成机理提出了一种新的解释;在试验中还发现了一个十分有趣的现象,即大部分龟裂都呈垂直或近似垂直相交,被龟裂分割出的区块形状多以四边形为主,其它多边形较少;最后提出了龟裂研究的下一步课题。  相似文献   

14.
气候影响下膨胀土开裂的力学分析   总被引:1,自引:0,他引:1  
采用线弹性断裂力学的方法,针对气候影响下的膨胀土开裂问题,提出了膨胀土开裂深度和裂缝间距的定量表达式,经比较与现场实测结果基本一致。并对开裂深度与泊松比、断裂韧度、基质吸力等土体特性参数的关系进行了详细的论述。  相似文献   

15.
将疏浚粘土应力一应变关系与粘性土的含水率联系起来,对于实际工程而言具有很大的参考价值。传统重塑土应力一应变归一化特性的研究只是针对某一特定性质的土体而言,这种归一化的研究方法显然具有一定的局限性。采用归一化含水率w/wl作为归一化因子,对主应力差渐进值进行归一化.探讨了双对数坐标系下主应力差渐进值与w/wl的线性关系。在此基础上基于Konder提出的双曲线模型将主应力差渐进值作为归一化因子,对三种不同疏浚粘土的应力一应变特性进行归一化分析,通过与实验资料的对比表明,提出的方法具有很好的归一化效果。  相似文献   

16.
周健  屠洪权 《岩土力学》1994,15(2):62-69
由于温室效应的连锁反应,致使地下水位不断上升。面对这种势态,本文以极限承载力理论为依据,提出了地下水位上升对浅基础的粘性土地基承载力影响的内涵规律。  相似文献   

17.
温度对非饱和土抗剪强度影响的试验研究   总被引:3,自引:0,他引:3  
在室内试验的基础上,对不同含水量和干密度的粘性土试样进行了不同环境温度下的直剪试验,获得了南京地区非饱和下蜀土重塑土抗剪强度与温度的关系.试验结果表明:温度对粘性土的抗剪强度有比较复杂的影响.当含水量大于约18%时,土的抗剪强度随着温度的升高而降低,表现出强度的热软化现象;而当含水量等于或低于18%时,土的抗剪强度在干密度等于1.67g·cm-3时,几乎不受温度影响,而当干密度小于1.67 g·cm-3时,土的抗剪强度随着温度的升高而增加,呈现出强度的热同结现象.与此同时,还对土的热固结和热软化现象的机理进行了分析.  相似文献   

18.
An experimental investigation was undertaken to study the effects of lime-stabilized soil-cushion on the strength behavior of expansive soil. In the present investigation, a series of laboratory tests (Unconfined compression tests and CBR tests) were conducted on both expansive soil alone and expansive soil cushioned with lime-stabilized non-expansive cohesive soil. Lime contents of 2, 4, 6, 8 and 10% by dry weight of cohesive non-swelling soil was used in the stabilized soil cushion. Both expansive soil and lime stabilized soil cushion were compacted to Standard Proctor’s optimum condition with thickness ratio 2:1. Tests on cushioned expansive soils were conducted at different curing and soaking periods i.e., 7, 14, 28 and 56 days. The test results revealed that maximum increase in strength was achieved after 14 days of curing or soaking period with 8% of lime content.  相似文献   

19.
城市垃圾卫生填埋场粘性土衬垫的截污容量及其研究意义   总被引:9,自引:0,他引:9  
圾卫生填埋法的关键技术之一是防渗垫层的铺,国内外对防治在垫层的要求是“防渗”,所设计的防渗垫层所用材料种类多、价格贵、铺设复杂、成本高。若把垫层铺设的指导思想改为“截污”,可充分利用对垃圾具有净化或隔能力的场地粘笥土地和低垫层铺设民本。“截污容量”是基于这种思想提出出来的、用一博征粘性土的截污能力的物理参量,其科学和实用意义、试验测试及计算方法将在本文得到探讨。  相似文献   

20.
Pavement structures on poor soil sub grades show early distresses causing the premature failure of the pavement. Clayey soils usually have the potential to demonstrate undesirable engineering behavior, such as low bearing capacity, high shrinkage and swell characteristics and high moisture susceptibility. Stabilization of these soils is a usual practice for improving the strength. This study reports the improvement in the strength of a locally available cohesive soil by addition of both fly ash and lime. Analysis using X-ray diffraction, scanning electron microscopy, coupled with energy dispersive spectroscopy, thermal gravimetric analysis, zeta potential and pH value test was carried out in order to elucidate the stabilization mechanism. The micro level analysis confirmed the breaking of montmorrillonite structure present in the untreated clay after stabilization. In the analysis, it was also confirmed that in the stabilization process, pozzolanic reaction dominated over the cation exchange capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号