首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show the results obtained in the FP7 European program EXTraS and in the ESA R&D ATHENA activity AREMBES aimed at a deeper understanding of the XMM-Newton background to better design the ATHENA mission. Thanks to an analysis of the full EPIC archive coupled to the information obtained by the Radiation Monitor we show the cosmic ray origin of the unfocused particle background and its anti-correlation with the solar activity. We show the first results of the effort to obtain informations about the particle component of the soft proton focused background.  相似文献   

2.
We report on a 120-ks XMM–Newton observation of the galaxy cluster Abell 2597 (A2597). Results from both the European Photon Imaging Camera (EPIC) and the Reflection Grating Spectrometer (RGS) are presented. From EPIC we obtain radial profiles of temperature, density and abundance, and use these to derive cooling time and entropy. We illustrate corrections to these profiles for projection and point spread function (PSF) effects. At the spatial resolution available to XMM–Newton , the temperature declines by around a factor of 2 in the central 150 kpc or so in radius, and the abundance increases from about one-fifth to over one-half solar. The cooling time is less than 10 Gyr inside a radius of 130 kpc. EPIC fits to the central region are consistent with a cooling flow of around 100 solar masses per year. Broad-band fits to the RGS spectra extracted from the central 2 arcmin are also consistent with a cooling flow of the same magnitude; with a preferred low-temperature cut-off of essentially zero. The data appear to suggest (albeit at low significance levels below formal detection limits) the presence of the important thermometer lines from Fe  xvii at 15–17 Å rest wavelength, characteristic of gas at temperatures ∼0.3 keV. The measured flux in each line is converted to a mass-deposition estimate by comparison with a classical cooling flow model, and once again values at the level of 100 solar masses per year are obtained. These mass-deposition rates, whilst lower than those of previous generations of X-ray observatories, are consistent with those obtained from ultraviolet data for this object. This raises the possibility of a classical cooling flow, at the level of around 100 solar masses per year, cooling from 4 keV by more than two orders of magnitude in temperature.  相似文献   

3.
A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.  相似文献   

4.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

5.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

6.
We present the results of a long (∼93 ks) XMM–Newton observation of the bright BL-Lac object  PKS 0548-322 ( z = 0.069)  . Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength  λ= 23.33 ± 0.01 Å  , which we interpret as O  vi Kα absorption at   z = 0.058  , i.e. ∼3000 km s−1 from the background object. The observed equivalent width of the absorption line, ∼30 mÅ, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density of   N O VI∼ 2 × 1016 cm−2  and turbulence with a Doppler velocity parameter   b > 100 km s−1  . Within the limitations of our RGS spectrum, no O  vii or O  v Kα absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is  ∼2.5 × 105 K  , with significantly lower or higher values being excluded by our limits on O  v or O  vii . If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through O  vi absorption. The existence of such a high column density absorber, much stronger than any previously detected one in O  vi , would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.  相似文献   

7.
We present XMM–Newton /EPIC spectra for the Laor et al. sample of Palomar Green (PG) quasars. We find that a power law provides a reasonable fit to the 2–5 keV region of the spectra. Excess soft X-ray emission below 2 keV is present for all objects, with the exception of those known to contain a warm absorber. However, a single power law is a poor fit to the 0.3–10.0 keV spectrum and instead we find that a simple model, consisting of a broken power law (plus an iron line), provides a reasonable fit in most cases. The equivalent width of the emission line is constrained in just 12 objects but with low (<2σ) significance in most cases. For the sources whose spectra are well fitted by the broken-power-law model, we find that various optical and X-ray line and continuum parameters are well correlated; in particular, the power-law photon index is well correlated with the FWHM of the Hβ line and the photon indices of the low- and high-energy components of the broken power law are well correlated with each other. These results suggest that the 0.3–10 keV X-ray emission shares a common (presumably non-thermal) origin, as opposed to suggestions that the soft excess is directly produced by thermal disc emission or via an additional spectral component. We present XMM–Newton Optical Monitor (OM) data, which we combine with the X-ray spectra so as to produce broad-band spectral energy distributions (SEDs), free from uncertainties due to long-term variability in non-simultaneous data. Fitting these optical–UV spectra with a Comptonized disc model indicates that the soft X-ray excess is independent of the accretion disc, confirming our interpretation of the tight correlation between the hard and soft X-ray spectra.  相似文献   

8.
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We use hydrodynamical N -body simulations to study the kinetic Sunyaev–Zel'dovich effect. We construct sets of maps, one square degree in size, in three different cosmological models. We confirm earlier calculations that on the scales studied the kinetic effect is much smaller than the thermal (except close to the thermal null point), with an rms dispersion smaller by about a factor of 5 in the Rayleigh–Jeans region. We study the redshift dependence of the rms distortion and the pixel distribution at the present epoch. We compute the angular power spectra of the maps, including their redshift dependence, and compare them with the thermal Sunyaev–Zel'dovich effect and with the expected cosmic microwave background anisotropy spectrum as well as with determinations by other authors. We correlate the kinetic effect with the thermal effect both pixel-by-pixel and for identified thermal sources in the maps to assess the extent to which the kinetic effect is enhanced in locations of strong thermal signal.  相似文献   

10.
We describe measurements of the mirror vignetting in the XMM-Newton Observatory made in-orbit, using observations of SNR G21.5-09 and SNR 3C58 with the EPIC imaging cameras. The instrument features that complicate these measurements are briefly described. We show the spatial and energy dependences of measured vignetting, outlining assumptions made in deriving the eventual agreement between simulation and measurement. Alternate methods to confirm these are described, including an assessment of source elongation with off-axis angle, the surface brightness distribution of the diffuse X-ray background, and the consistency of Coma cluster emission at different position angles. A synthesis of these measurements leads to a change in the XMM calibration data base, for the optical axis of two of the three telescopes, by in excess of 1 arcmin. This has a small but measureable effect on the assumed spectral responses of the cameras for on-axis targets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Ceres’ surface has commonly been linked with carbonaceous chondrites (CCs) by ground‐based telescopic observations, because of its low albedo, flat to red‐sloped spectra in the visible and near‐infrared (VIS/NIR) wavelength region, and the absence of distinct absorption bands, though no currently known meteorites provide complete spectral matches to Ceres. Spatially resolved data of the Dawn Framing Camera (FC) reveal a generally dark surface covered with bright spots exhibiting reflectance values several times higher than Ceres’ background. In this work, we investigated FC data from High Altitude Mapping Orbit (HAMO) and Ceres eXtended Juling (CXJ) orbit (~140 m/pixel) for global spectral variations. We found that the cerean surface mainly differs by spectral slope over the whole FC wavelength region (0.4–1.0 μm). Areas exhibiting slopes ?1 constitute only ~3% of the cerean surface and mainly occur in the bright material in and around young craters, whereas slopes ≥?10% μm?1 occur on more than 90% of the cerean surface; the latter being denoted as Ceres’ background material in this work. FC and Visible and Infrared Spectrometer (VIR) spectra of this background material were compared to the suite of CCs spectrally investigated so far regarding their VIS/NIR region and 2.7 μm absorption, as well as their reflectance at 0.653 μm. This resulted in a good match to heated CI Ivuna (heated to 200–300 °C) and a better match for CM1 meteorites, especially Moapa Valley. This possibly indicates that the alteration of CM2 to CM1 took place on Ceres.  相似文献   

12.
The Experimental Projectile Impact Chamber (EPIC) is a specially designed facility for the study of processes related to wet‐target (e.g., “marine”) impacts. It consists of a 7 m wide, funnel‐shaped test bed, and a 20.5 mm caliber compressed N2 gas gun. The target can be unconsolidated or liquid. The gas gun can launch 20 mm projectiles of various solid materials under ambient atmospheric pressure and at various angles from the horizontal. To test the functionality and quality of obtained results by EPIC, impacts were performed into dry beach sand targets with two different projectile materials; ceramic Al2O3 (max. velocity 290 m s?1) and Delrin (max. velocity 410 m s?1); 23 shots used a quarter‐space setting (19 normal, 4 at 53° from horizontal) and 14 were in a half‐space setting (13 normal, 1 at 53°). The experiments were compared with numerical simulations using the iSALE code. Differences were seen between the nondisruptive Al2O3 (ceramic) and the disruptive Delrin (polymer) projectiles in transient crater development. All final crater dimensions, when plotted in scaled form, agree reasonably well with the results of other studies of impacts into granular materials. We also successfully validated numerical models of vertical and oblique impacts in sand against the experimental results, as well as demonstrated that the EPIC quarter‐space experiments are a reasonable approximation for half‐space experiments. Altogether, the combined evaluation of experiments and numerical simulations support the usefulness of the EPIC in impact cratering studies.  相似文献   

13.
We report near-infrared molecular hydrogen and Brackett γ observations towards the massive star formation site G323.74−0.26. The region contains an H  ii region, ∼30 arcsec across, and two Class II methanol maser sites, which are separate from the H  ii region. We show that the spectral type of the star powering the H  ii region is B0. We also show that at least one of the maser sites is powered by an infrared source that appears to be at least as luminous as the star responsible for the H  ii region. However, neither of the two stars associated with the methanol maser sites shows any signs of radio continuum emission above 0.2 mJy. For at least one of these maser sites, this shows a real deficiency in the radio continuum flux, which we suggest is an indication that the star is in an early stage of development, before its H  ii region becomes visible, or it is a multiple intermediate mass star system. A shocked molecular hydrogen outflow is seen extending from one of the maser sites towards the west and possibly in a fan shape, suggesting that the stars associated with the maser sites are indeed at a very early stage of evolution.  相似文献   

14.
Most of the extragalactic sources from which very-high-energy (VHE, E > 1011 eV) gamma-ray fluxes have been detected belong to the category of high-energy peaked BL Lacertae objects (HBLs)—the sources in which the synchrotron radiation peaks in the UV or X-ray band. They often have higher X-ray luminosities than the VHE gamma-ray energy output, which makes them the most valuable objects for studying the characteristic spectral and temporal variations in the region of the synchrotron peak of the spectral energy distribution. The blazar 1ES 1426+428 belonging to this category is a target of many multiwavelength studies, both orbital and ground-based ones. The properties of its X-ray emission have also been investigated using RXTE/PCA, XMM-Newton, and SWIFT observations. Archival PCA/RXTE data with a total exposure time in 2002 and 2004 of ≈120h and the most recent available background and calibration files have been used. The extracted light curves of 1ES 1426+428 in the 2.9–24 keV energy band have shown an intense flaring activity on various time scales. Analysis of the observational data has also confirmed the spectral hardening with increasing X-ray intensity typical of blazars. The flaring state of the object is also characterized by a flat spectrum, which steepens with decreasing flux. The previously detected evidence of a spectral hysteresis in a separate flare has also been confirmed. Observations of 1ES 1426+428 with the SWIFT/XRT telescope and the EPIC instrument onboard XMM-Newton have revealed several intermediate-intensity flares in the 1.5–12 keV energy band with flux variations reaching a factor of 2, while analysis of the light curves has revealed a correlation between two components of the X-ray emission from the object.  相似文献   

15.
After more than 15 years of operation of the EPIC camera on board the XMM-Newton X-ray observatory, we have reviewed the status of its Thin and Medium filters. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, Raman scattering, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Furthermore, we have investigated the status of the EPIC flight filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission. We both investigated repeated observations of single optically bright targets and performed a statistical analysis of the extent of loading versus visual magnitude at different epochs. We report the results of the measurements conducted up to now. Most notably, we find no evidence for change in the UV/VIS transmission of the back-up filters in ground tests spanning a 2 year period and we find no evidence for change in the optical transmission of the thin filter of the EPIC-pn camera from 2002 to 2012. We point out some lessons learned for the development and calibration programs of filters for X-ray detectors in future Astronomy missions.  相似文献   

16.
We use three-dimensional smoothed particle hydrodynamics simulations together with a dynamical ray-tracing scheme to investigate the build-up of the first H  ii regions around massive Population III stars in minihaloes. We trace the highly anisotropic breakout of the ionizing radiation into the intergalactic medium, allowing us to predict the resulting recombination radiation with greatly increased realism. Our simulations, together with Press–Schechter type arguments, allow us to predict the Population III contribution to the radio background at  ∼100 MHz  via bremsstrahlung and 21-cm emission. We find a global bremsstrahlung signal of around  1 mK  , and a combined 21-cm signature which is an order of magnitude larger. Both might be within the reach of the planned Square Kilometer Array experiment, although detection of the free–free emission is only marginal. The imprint of the first stars on the cosmic radio background might provide us with one of the few diagnostics to test the otherwise elusive minihalo star formation site.  相似文献   

17.
We report the first results of an observational programme designed to determine the luminosity density of high-redshift quasars     quasars) using deep multicolour CCD data. We report the discovery and spectra of three     high-redshift     quasars, including one with     . At     , this is the fourth highest redshift quasar currently published. Using these preliminary results we derive an estimate of the         quasar space density in the redshift range     of     . When completed, the survey will provide a firm constraint on the contribution to the ionizing UV background in the redshift range     from quasars by determining the faint-end slope of the quasar luminosity function. The survey uses imaging data taken with the 2.5-m Isaac Newton Telescope as part of the Public Isaac Newton Group Wide Field Survey (WFS). This initial sample of objects is taken from two fields of effective area ∼12.5 deg2 from the final ∼100 deg2.  相似文献   

18.
We investigate in detail the influence of parametrizations of the dark energy equation of state on reconstructing dark energy geometrical parameters,such as the deceleration parameter q(z) and Om diagnostic.We use a type Ia supernova sample,baryon acoustic oscillation data,cosmic microwave background information along with twelve observational Hubble data points to constrain cosmological parameters.With the joint analysis of these current datasets,we find that the parametrizations of w(z) have little influe...  相似文献   

19.
We present the analysis and first results from the Reflection Grating Spectrometer (RGS) during the 320-ks XMM–Newton observation of the Seyfert 1 galaxy MCG–6-30-15. The spectrum is marked by a sharp drop in flux at 0.7 keV which has been interpreted by Branduardi-Raymont et al. using RGS spectra from an earlier and shorter observation as the blue wing of a strong relativistic O  viii emission line and by Lee et al. using a Chandra spectrum as due to a dusty warm absorber. We find that the drop is well explained by the Fe  i L2,3 absorption edges and obtain reasonable fits over the 0.32–1.7 keV band using a multizone, dusty warm absorber model constructed using the photoionization code cloudy . Some residuals remain which could be due to emission from a relativistic disc, but at a much weaker level than from any simple model relying on relativistic emission lines alone. A model based on such emission lines can be made to fit if sufficient (warm) absorption is added, although the line strengths exceed those expected. In order to distinguish further whether the spectral shape is dominated by absorption or emission, we examined the difference spectrum between the highest and lowest flux states of the source. The EPIC pn data indicate that this is a power law in the 3–10 keV band which, if extrapolated to lower energies, reveals the absorption function acting on the intrinsic spectrum, provided that any emission lines do not scale exactly with the continuum. We find that this function matches our dusty warm absorber model well if the power law steepens below 2 keV. The soft X-ray spectrum is therefore dominated by absorption structures, with the equivalent width of any individual emission lines in the residuals being below approximately 30 eV.  相似文献   

20.
We derive constraints on the parameters of the radiatively decaying dark matter (DM) particle, using the XMM–Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5–13 arcmin) parts of M31, we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrinos in the Dodelson–Widrow (DW) scenario, we obtain the lower mass limit   m s < 4 keV  , which is stronger than the previous one   m s < 6 keV  , obtained recently by Asaka, Laine & Shaposhnikov. Comparing this limit with the most recent results on Lyman α forest analysis of Viel et al.  ( m s > 5.6 keV  ), we argue that the scenario in which all the DM is produced via the DW mechanism is ruled out. We discuss, however, other production mechanisms and note that the sterile neutrino remains a viable candidate for DM, either warm or cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号