首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The electrostatic charging of the LISA test masses due to exposure of the spacecraft to energetic particles in the space environment has implications in the design and operation of the gravitational inertial sensors and can affect the quality of the science data. Robust predictions of charging rates and associated stochastic fluctuations are therefore required for the exposure scenarios expected throughout the mission. We report on detailed charging simulations with the Geant4 toolkit, using comprehensive geometry and physics models, for Galactic cosmic-ray protons and helium nuclei. These predict positive charging rates of 50+e/s (elementary charges per second) for solar minimum conditions, decreasing by half at solar maximum, and current fluctuations of up to 30+e/s/Hz1/2. Charging from sporadic solar events involving energetic protons was also investigated. Using an event-size distribution model, we conclude that their impact on the LISA science data is manageable. Several physical processes hitherto unexplored as potential charging mechanisms have also been assessed. Significantly, the kinetic emission of very low-energy secondary electrons due to bombardment of the inertial sensors by primary cosmic rays and their secondaries can produce charging currents comparable with the Monte Carlo rates.  相似文献   

3.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

4.
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.  相似文献   

5.
We use two methods of constructing the initial mass distribution, the traditional way and Monte Carlo simulation, to obtain integrated U - B, B - V, V-R and V-I colours and absorption-line indices denned by the Lick Observatory image dissector scanner (referred to as Lick/IDS), for instantaneous burst solarmetallicity single stellar populations with ages in the range 1-15 Gyr. We find that the evolutionary curves of all colours obtained by the traditional method are smoother than those by Monte Carlo simulation, that the U - B and B - V colours obtained by the two methods agree with one another, while the V - R and V - I colours by the traditional method are bluer than those by Monte Carlo simulation. A comparison of the Lick/IDS absorption-line indices shows that the variations in all the indices by the traditional method are smoother than that for the Monte Carlo simulation, and that all the indices except for TiO1 and TiO2 are consistent with those for the Monte Carlo simulation.  相似文献   

6.
在X射线天文学以及辐射物理学中,当硬X射线穿过" 冷"的等离子体时所发生的Compton软化是一种重要的辐射转移过程.简要介绍推广的Kompaneets方程,该方程在hv〈mec2及kTe〈mec2较宽松的条件下广泛成立,因此不仅能处理Compton硬化过程,而且也适用于Compton软化过程,后者在目前快速发展的X射线和γ射线天文学中十分重要.基于此方程,我们对天体物理中4种常见辐射谱(Gauss型发射谱线、黑体辐射谱、幂律辐射谱和热轫致辐射谱)在Compton软化情况下的谱演化进行了数值求解,并同Monte Carlo模拟结果做比较,证实了推广的Kompaneets方程的正确性和有效性.最后指出此方程在X射线天文学和γ射线天文学中的重要意义和潜在应用.  相似文献   

7.
Monte Carlo simulations can either be viewed as a numerical method for solving evolutionary equations or as a way for statistically modelling the outcome of chaotic dynamical systems. Thus they are well suited for treating many aspects of cometary dynamics. We present a critical review of past applications of Monte Carlo simulations for both long- and short-period comets indicating the strength and weaknesses of the methods with suggestions for future applications.  相似文献   

8.
The Cherenkov radio pulse emitted by hadronic showers of energies in the EeV range in ice is calculated for the first time using full three dimensional simulations of both shower development and the coherent radio pulse emitted as the excess charge develops in the shower. A Monte Carlo, ZHAireS, has been developed for this purpose combining the high energy hadronic interaction capabilities of AIRES, and the dense media propagation capabilities of TIERRAS, with the precise low energy tracking and specific algorithms developed to calculate the radio emission in ZHS. A thinning technique is implemented to allow the simulation of radio pulses induced by showers up to 10 EeV in ice. The code is validated comparing the results for electromagnetic and hadronic showers to those obtained with GEANT4 and ZHS codes. The contribution to the pulse of other shower particles in addition to electrons and positrons, mainly protons, pions and muons, is found to be below 3% for 10 PeV and above proton induced showers. The characteristics of hadronic showers and the corresponding Cherenkov frequency spectra are compared with those from purely electromagnetic showers. The dependence of the spectra on shower energy and high-energy hadronic model is addressed and parameterizations for the radio emission in hadronic showers in ice are given for practical applications.  相似文献   

9.
The Heitler–Matthews model for hadronic air showers will be extended to all the generations of electromagnetic subshowers in the hadronic cascade. The analysis is outlined in detail for showers initiated by primary protons. For showers initiated by iron primaries the part of the analysis is given for as far as it differs from the analysis for a primary proton. Predictions for shower sizes and the depth of maximum shower size are compared with results of Monte Carlo simulations. The depth of maximum as it follows from the extrapolation of the Heitler–Matthews model restricted to the first generation of electromagnetic subshowers is too small with respect to Monte Carlo predictions. It is shown that the inclusion of all the generations of electromagnetic subshowers leads to smaller predictions for the depth of maximum and to smaller predictions for the elongation rate. The discrepancy between discrete model predictions and Monte Carlo predictions for the depth of maximum can therefore not be explained from the number of generations that is taken into consideration. An alternative explanation will be proposed.  相似文献   

10.
A detailed simulation of vertical showers in atmosphere produced by primary gammas and protons, in the energy range 1–100 TeV, has been performed by means of the FLUKA Monte Carlo code, with the aim of studying the time structure of the shower front at different detector heights. It turns out that the time delay distribution can be fitted using few parameters coincident with the distribution central moments. Such parameters exhibit a smooth behaviour as a function of energy. These results can be used both for detector design and for the interpretation of the existing measurements. Differences in the time structure between gamma and proton induced showers are found and explained in terms of the nonrelativistic comonent of extensive air showers.  相似文献   

11.
Two long-term simulation methods for cometary orbits, a Monte Carlo method and a direct integration method, are compared with each other. The comparison is done in seven inclination and perihelion distance intervals, and shows differences in dynamical lifetime and capture probabilities for the following main reasons. We use a finite energy step approximation in the Monte Carlo method and the method considers only close approaches with the planets. The differences can be taken into account statistically and it is possible to calculate the correction factors for the capture probability and dynamical lifetime in the Monte Carlo method. Both corrections depend on the inclination and on the value of the minimum energy step. The capture probabilities of the short-period comets originating in the Oort Cloud are calculated by the corrected Monte Carlo method and compared with published results.  相似文献   

12.
The Hard X-ray Modulation Telescope (HXMT) is a broadband X-ray (1250 keV) astronomical satellite. Its core payload, the High Energy X-ray Telescope (hereafter HE), is operated in the hard X-ray energy range (20250 keV) and dedicated to the hard X-ray high-sensitivity survey observation, hard X-ray sky mapping and high-sensitivity focused observations towards particular celestial bodies. In order to achieve a high sensitivity, it is important to reduce effectively the background that is caused by the interactions between the detector and space particles (γ-ray, protons, electrons, neutrons). Combining a series of references about the near-earth space background with the up-to-date observational data, this paper presents a set of self-consistent data and energy spectrum formulae of near-earth space particles for the convenience of applications. In addition, by the simulative calculations with the software Geant 4, the background of HXMT and its variations with the time and orbit are also given.  相似文献   

13.
The experience gained with the current generation of X-ray telescopes like Chandra and XMM-Newton has shown that low energy “soft” protons can pose a severe threat to the possibility to exploit scientific data, reducing the available exposure times by up to 50% and introducing a poorly reproducible background component. These soft protons are present in orbits outside the radiation belts and enter the mirrors, being concentrated towards the focal plane instruments, losing energy along their path and finally depositing their remaining energy in the detectors. Their contribution to the residual background will be even higher for ATHENA with respect to previous missions, given the much higher collecting area of the mirrors, even if the instruments will likely suffer no significant radiation damage from this particles flux. As a consequence this soft proton flux shall be damped with the use of a magnetic diverter to avoid excess background loading on the WFI or X-IFU instruments. We present here a first complete evaluation of this background component for the two focal plane instruments of the ATHENA mission in absence of a magnetic diverter, and derive the requirements for such device to reduce the soft protons induced background below the level required to enable the mission science. We estimate the soft proton flux expected in L2 for the interplanetary component and for the component generated locally by acceleration processes in the magnetotail. We produce a proton response matrix for each of the two instruments of ATHENA focal plane, exploiting two independent Monte Carlo simulations to estimate the optics concentration efficiency, and Geant4 simulations to evaluate the energy loss inside the radiation filters and deposited in the detector. With this modular approach we derive the expected fluxes and spectra for the soft protons component of the background. Finally, we calculate the specifics of a magnetic diverter able to reduce such flux below the required level for both X-IFU and WFI.  相似文献   

14.
The affected pixel number distribution of the ISOCAM Long-Wave (LW) detector in cosmic ray-induced glitchesis calculated. The methods employed are Monte Carlo ray-tracing techniques and the taxi metric, which allows direct calculation of the affected pixels based on the knowledge of entry and exit points of the ray. The simulation results are compared with long-term experimental data. Based on the simulations combined with the CREME96 cosmic ray model for solar quiet period, it is estimated that the detector is on average traversed by 0.3 cosmic ray protons per second. For the experimental data, a corresponding minimum bound of 0.14 cosmic ray protons per second is obtained. Deviations in the simulated and measured pixel number distributions are discussed.  相似文献   

15.
In the present paper the radiation production and energy deposition by ring current protons precipitated along magnetic field lines into the mid-latitude upper atmosphere is investigated. Specifically, we are interested in protons lost from the ring current by plasma instabilities. We first determine the magnitude and sharpness of the atmospheric loss cone. We then study the behavior of the precipitated hydrogen particles in the denser atmosphere using a Monte Carlo calculation. It is found that the energy deposition and radiation production will critically depend on how far the ring current protons diffuse into the loss cone before being neutralized in the atmosphere; this in turn will depend on the strength of the plasma turbulence in the ring current belt region.  相似文献   

16.
Solar neutron events provide important opportunities to explore particle acceleration mechanisms using data from ground-based detectors and spacecrafts. Energetic neutrons carry crucial physics information of the acceleration site, such as energy spectrum, atmospheric elements of solar flare, scale height, convergence of the magnetic field and magnetohydrodynamic turbulence. Here 12 representative solar neutron events observed on the Earth, together with X and γ-ray observations from spacecrafts are presented. Theoretical approaches on solar neutrons that are carried out mainly through the Monte Carlo simulation are compared with the observation data, and the constraints of different theoretical models on the observations are to be summarized.  相似文献   

17.
A string-decay cascade phenomenological model that conservatively extrapolates accelerator data has been adapted to cosmic ray-air collisions. Monte Carlo simulations of extensive air showers (EAS) initiated by primary protons and nuclei have been performed. The best agreement between the predictions of this model and experimental data on spectra of electron sizes (Ne) for vertical incidence at different altitudes is found for a heavy mass composition of the cosmic rays (above the “knee” energy).  相似文献   

18.
Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry.  相似文献   

19.
HEMAS-DPM is a Monte Carlo for the simulation of very high energy cosmic ray showers, which includes the DPMJET-II code based on the two component Dual Parton Model. DPMJET-II provides also charm production in agreement with data and, for p exceeding 5 GeV/c, with perturbative QCD results in proton-proton interactions. In this respect, a new scheme has been considered for the inclusive production of D mesons at large p in hadronic collisions in the framework of perturbative fragmentation functions, allowing an analysis at the Next to Leading Order (NLO) level which goes beyond the fixed I(s3) perturbative theory of open charm production. We have applied HEMAS-DPM to the calculation of the prompt muon component for Eμ ≥ 1 TeV in air showers considering the two extreme cases of primary protons and Fe nuclei.  相似文献   

20.
The scattering of soft protons inside the Wolter-type optics of X-ray observatories has been proven to concentrate these particles onto the focal plane instruments. The funneling of these protons increases the instrumental background and can also contribute to the degrading of the detectors. The instrumental background and degradation of the detector’s performance experienced by Chandra and XMM-Newton is significantly larger than what was expected on the basis of previous Monte Carlo simulations. For Chandra the main issue is the degradation of the energy resolution due to lattice displacements in the detectors. For XMM the contribution to the instrumental background is more significant. In between, new laboratory measurements as well as a revision of the theory are needed to correctly assess the impact of the environmental radiation for future missions. In this publication we present a Geant4 class that will allow future users to select between either theoretical models or measured data to simulate the scattering of soft protons at grazing angles. To develop this method, we revisit the theory of elastic scattering of protons on polished surfaces and implement these approaches into Geant4. We also implemented recently performed measurements using parts of eROSITA (extended ROentgen Survey with an Imaging Telescope Array) mirror shells as scattering targets as another scattering model to be used within the Geant4 toolkit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号