首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ∼36°S), often gives rise to a buoyant coastal current (the ‘Plata plume’) that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ∼32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.  相似文献   

2.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

3.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

4.
The single, long and narrow channel that usually connects choked coastal lagoons to the ocean can serve as a natural hydraulic low-pass filter that reduces or eliminates tidal and subtidal effects inside the lagoon. This study proposes an alternative method of estimating the attenuation of the tidal and subtidal oscillations throughout the Patos Lagoon estuary. The attenuation is estimated for conditions of contrasting river runoff and weather (summer and winter). A high-pass/low-pass filter (fast fourier transformation technique – FFT) is applied to time series of sea-surface elevation (SSE) measured at the mouth of the Patos Lagoon. The resulting high-frequency (tidal) and low-frequency (subtidal) signals are used in independent simulations to force the TELEMAC-2D model. Attenuation of the tidal and subtidal signals throughout the estuary is estimated by applying cross-spectral analysis between the model-generated SSE time series at different locations throughout the estuary and the filtered SSE time series measured at the mouth. Results from the proposed method suggest that: (1) the low-frequency (subtidal) oscillations are less attenuated and propagate further than the high-frequency (tidal) oscillations in the Patos Lagoon estuary; (2) the filtering capability of the Patos Lagoon estuary is expected to follow a seasonal pattern, although further investigations on an interannual time scale are recommended in order to confirm this hypothesis; (3) the influence of the oceanic boundary processes on the SSE dynamics of the lagoon is restricted to the lower estuary. Further inland, the local forcing generated by the wind and freshwater input is likely to be the main forcing effect controlling the dynamics of the system. The proposed method proved to be an efficient and alternative way of estimating the attenuation of energy in the tidal and subtidal bands throughout the access channel of a choked coastal lagoon located in an area of reduced tidal influence.Responsible Editor: Iris Grabemann  相似文献   

5.
Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.  相似文献   

6.
The physical processes affecting the development of seasonal hypoxia over the Louisiana-Texas shelf were examined using a high-resolution, three-dimensional, unstructured-grid, Finite Volume Coastal Ocean Model (FVCOM). The model was forced with the observed freshwater fluxes from the Mississippi and Atchafalaya Rivers, surface winds, heat fluxes, tides and offshore conditions. The simulations were carried out over a six-month period, from April to September 2002, and the model performance was evaluated against several independent series of observations that included tidal gauge data, Acoustic Doppler Current Profiler (ADCP) data, shipboard measurements of temperature and salinity, vertical salinity and sigma-t profiles, and satellite imagery. The model accurately described the offshore circulation mode generated over the Louisiana-Texas shelf by the westerly winds during summer months, as well as the prevalent westward flow along the coast caused by the easterly winds during the rest of the study period. The seasonal cycle of stratification also was well represented by the model. During 2002, the stratification was initiated in early spring and subsequently enhanced by the intensity and phasing of riverine freshwater discharges. Strong stratification persisted throughout the summer and was finally broken down in September by tropical storms. The model simulations also revealed a quasi-permanent anticyclonic gyre in the Louisiana Bight region formed by the rotational transformation of the Mississippi River plume, whose existence during 2002 was supported by the satellite imagery and ADCP current measurements. Model simulations support the conclusion that local wind forcing and buoyancy flux resulting from riverine freshwater discharges were the dominant mechanisms affecting the circulation and stratification over the inner Louisiana-Texas shelf.  相似文献   

7.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

8.
Extensive mud deposits superimposed on the predominantly sandy inner continental shelf adjacent to the Patos Lagoon estuary, indicates that the Lagoon is a potential source of fine sediments to the coastal sedimentary system. The lagoon is large and shallow, and the water movement is mainly controlled by wind-driven set-up and set-down. The mean river inflow is around 2000 m3 s−1, although peak flow rates exceeding 20,000 m3 s−1 have been observed during El Niño periods. Though the tidal elevations are small, tidal velocities in the lagoon's inlet can be significant due to the large extension of the backwaters. Moreover, significant exchange flows can be generated between the estuary and coastal area due to barotropic pressure gradients established as a function of wind and freshwater discharge. The predominant net flow is seawards, but opposite near-bed flows due to pronounced vertical salinity stratification can also be observed. The coastal area is characterized by small tidal effects, large scale ocean circulation, wind-induced residual flows and wave-driven currents, where the waves originate from swell or are locally generated.  相似文献   

9.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

10.
The two-dimensional barotropic, hydrodynamic and transport model MOHID is applied to the Patos Lagoon system using a nested modelling approach to reproduce both the lagoon and estuary hydrodynamics. A new Lagrangian oil spill model is presented and used to simulate a hypothetical oil spill in the estuary. Hydrodynamic fields are validated and used to force the oil model. Results show that the hydrodynamics of this system is mainly controlled by the wind and freshwater discharge. The dispersion, concentration and thickness evolution of the oil in the first day after the spill is determined by the equilibrium between these two factors. The freshwater discharge is the major factor controlling the oil dispersion for discharges greater than 5000 m3 while the wind assumes control for lower discharge amounts. The results presented are a first step toward a coastal management tool for the Patos Lagoon.  相似文献   

11.
SST variability on seasonal to sub-annual scales in the coastal region of South America between 30° and 39°S, largely influenced by the Rio de la Plata estuary’s plume, and its relation to wind variability are explored. Data are six years of daily ensembles of gridded satellite SST and sea surface winds with spatial resolutions of about 11 and 25 km, respectively. Observations from oceanographic cruises are used to validate the results. It is found that the seasonal cycle can be explained in terms of two modes. The first one, characterizing fall-early winter/spring-early summer, is related to the radiative cycle. The second one, corresponding to late summer and winter, displays warm/cold anomalies along the Uruguayan coast forced by the prevailing winds during those seasons. In the upper estuary and the northern part of the area of influence of the freshwater plume, variability in sub-annual scales is significant. A large portion of this variance is related to zonal wind anomalies that force warm/cold SSTs along that coast. Cold anomalies of up to −5 °C occur under anomalously intense easterly winds, indicating upwelling. These events are very frequent and show large persistence, occurring up to one and a half months. They also display a marked seasonal cycle – being more frequent in late spring and summer – large inter-annual variability and seem to be modulated by the continental runoff. When discharge is low, the freshwater plume retracts to the west, reducing the inner-shelf stratification and increasing the likelihood of a full upwelling to the surface. In winter, short time-scale SST variability is mostly due to variability in the atmospheric cold fronts crossing the region. Weaker or less frequent (stronger or more frequent) fronts produce a generalized warming (cooling) over the region. As the estuary heats (colds) faster than the shelf, a warm (cold) anomaly develops in the upper Río de la Plata. On inter-annual time scales, probably because ENSO activity was weak during the studied period, SST variability was not important.  相似文献   

12.
We studied the circulation on the coastal domain of the Amazon Shelf by applying the hydrodynamic module of the estuarine and coastal ocean model and sediment transport. The first barotropic experiment aimed to explain the major bathymetric effects on tides and those generated by anisotropy in sediment distribution. We analyzed the continental shelf response of barotropic tides under realistic bottom stress parametrization (C d ), considering sediment granulometry obtained from a faciologic map, where river mud deposits and reworked sediments areas are well distinguished, among others classes of sediments. Very low C d values were set in the fluid mud regions off the Amapá coast (1.0 10???4), in contrast to values around 3.5 10???3 for coarser sediment regions off the Pará coast. Three-dimensional experiments represented the Amazon River discharge and trade winds, combined to barotropic tide influences and induced vertical mixing. The quasiresonant response of the Amazon Shelf to the M2 tide acts on the local hydrodynamics by increasing tidal admittance, along with tidal forcing at the shelf break and extensive fluid mud regions. Harmonic analysis of modeled currents agreed well with the analysis of the AMASSEDS observational data set. Tidal-induced vertical shear provided strong homogenization of threshold waters, which are subject to a kind of hydraulic control due to the topographic steepness. Ahead of the hydraulic jump, the low-salinity plume is disconnected from the bottom and acquires negative vorticity, turning southeastward. Tides act as a generator mechanism and topography, via hydraulic control, acts as a maintainer mechanism for the low-salinity frontal zone positioning. Tidally induced southeastward plume fate is overwhelmed by northwestward trade winds so that they, along with background circulation, probably play the most important role on the plume fate and variability over the Amazon Shelf.  相似文献   

13.
Satellite-derived chlorophyll-a fields have been used to investigate temporal and spatial variability of chlorophyll-a concentration over the continental shelf zone (25–40°S and 60–45°W) close to the La Plata River estuary. Ocean color data used in this study were obtained by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and consisted of 368 weekly averaged Standard Mapped Images (SMI), from October 1997 to September 2005. Fourier harmonic and EOF analyses were used to study the variability of log-transformed chlorophyll-a concentration in the region. The harmonic analysis has shown that the annual cycle was the most dominant signal followed by the semi- and quadri-annual cycles, in certain areas. The strong annual cycle is mainly present in latitudes lower than 34°S where relatively high amplitudes (∼1.9 mg m−3) in pigment variation are seen over the southern Brazilian continental shelf. The semi-annual cycle is mainly associated with the Brazil–Malvinas frontal zone oscillation while the 4-year signal is related to positive La Plata discharge anomalies influenced by El Niño events. After removing the annual signal from the log-transformed chlorophyll anomalies, the EOF results showed that the first three modes captured 85.1% of the variability associated with the regional mean phytoplankton chlorophyll pattern in our smoothed data set. The first three modes explained, respectively, 63.4%, 14.1% and 7.6%. The EOF results showed that the long-term chlorophyll time/space patterns are associated with both La Plata discharge anomaly (mode 1) and alongshore wind stress (mode 2). A reconstruction of the chlorophyll anomaly fields has been made using the two leading EOF modes over two periods of high La Plata River discharge, during ENSO events. In the first event, the spatial patterns of high chlorophyll anomaly were confined to the southern portion of the region, associated with NE winds, which push the plume near the estuary mouth. The second period revealed an elongated tongue of positive chlorophyll anomalies over the Uruguayan and Brazilian middle continental shelves, associated with favorable SW winds. The analyses performed in this study allowed identification of the main modes of variability in SeaWiFS-derived chlorophyll in the region, which were consistent with modulations of important regional environmental forcing mechanisms.  相似文献   

14.
Observations of the Hudson River plume were taken in the spring of 2006 in conjunction with the Lagrangian Transport and Transformation Experiment using mooring arrays, shipboard observations, and satellite data. During this time period, the plume was subjected to a variety of wind, buoyant, and shelf forcings, which yield vastly different responses in plume structure including a downstream recirculating eddy. During weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed. Freshwater transport during periods when the downwelling wind was closely aligned with the coast was near the river discharge values. During periods with a cross-shore component to the wind, freshwater transport in the coastal current estimated by the mooring array is less than the river discharge due to a widening of the plume that leads to the internal Rossby radius scaling for the plume width to be invalid. The offshore detachment of plume and formation of a downstream eddy that is observed surprisingly persisted for 2 weeks under a variety of wind forcing conditions. Comparison between mooring, shipboard, and satellite data reveal the downstream eddy is steady in time. Shipboard transects yield a freshwater content equal to the previous 3 days of river discharge. The feature itself was formed due to a large discharge following a strong onshore wind. The plume was then further modified by a brief upwelling wind and currents influenced by the Hudson Shelf Valley. The duration of the detachment and downstream eddy can be explained using a Wedderburn number which is largely consistent with the wind strength index described by Whitney and Garvine (J Geophys Res 110:C03014 1997).  相似文献   

15.
Fate of three major rivers in the Bohai Sea: A model study   总被引:1,自引:0,他引:1  
Huanghe (Yellow River), Haihe and Liaohe are three major rivers flowing into the Bohai Sea and account for more than 80% of the freshwater and land-drained material inputs annually. The fate of three rivers in the seawaters correlates with the transport and distribution of the riverine sediments and nutrients, and further exerts a profound influence on the local marine ecosystem dynamics. Therefore, the evolution of the river plumes under the influence of the freshwater buoyancy, the tidal forcing and the wind stress are examined using a three-dimensional primitive equation ocean circulation model, independently and jointly. It is found that both tide and wind stirring can deteriorate the stabilization of the water column caused by the freshwater buoyancy; however, the processes are different. The tide stirring originates from the seafloor due to the bottom friction as the tidal wave propagates into the shallow waters, and then the turbulent kinetic energy dissipates upward. On the other hand, the wind stirring proceeds in the up-down direction. The influences of different winds on the evolution of the river plumes are also examined. Since the situation of each river mouth is different, the wind influence is also distinct. At last, the fate of three major rivers driven by the combined tidal forcing and climatology winds is reproduced, and the simulated salinity distribution shows a reasonable agreement with that observed, meaning that the river plume evolution plays a crucial role in shaping the salinity distribution in BS.  相似文献   

16.
Satellite ocean color and surface salinity data are used to characterize the space–time variability of the Río de la Plata plume. River outflow and satellite wind data are also used to assess their combined effect on the plume spreading over the Southwestern South Atlantic continental shelf. Over the continental shelf satellite-derived surface chlorophyll-a (CSAT) estimated by the OC4v4 SeaWiFS retrieval algorithm is a good indicator of surface salinity. The log (CSAT) distribution over the shelf presents three distinct modes, each associated to: Subantarctic Shelf Water, Subtropical Shelf Water and Plata Plume water. The log (CSAT) 0.4–0.8 range is associated with a sharp surface salinity transition across the offshore edge of the Plata plume from 28.5 to 32.5. Waters of surface salinity <31, derived from mixtures of Plata waters with continental shelf waters, are associated to log (CSAT)>0.5. In austral winter CSAT maxima extend northeastward from the Plata estuary beyond 30°S. In summer the high CSAT waters along the southern Brazil shelf retreat to 32°S and extend south of the estuary to about 37.5°S, only exceeding this latitude during extraordinary events. The seasonal CSAT variations northeast of the estuary are primarily controlled by reversals of the along-shore wind stress and surface currents. Along-shore wind stress and CSAT variations in the inner and mid-shelves are in phase north of the estuary and 180° out of phase south of the estuary. At interannual time scales northernmost Plata plume penetrations in winter (∼1200 km from the estuary) are associated with more intense and persistent northeastward wind stress, which in the period 2000–2003, prevailed over the shelf south of 26°S. In contrast, in winter 1999, 2004 and 2005, characterized by weaker northeastward wind stress, the plume only reached between 650 and 900 km. Intense southwestward plume extensions beyond 38°S are dominated by interannual time scales and appear to be related to the magnitude of the river outflow. The plume response to large river outflow fluctuations observed at interannual time scales is moderate, except offshore from the estuary mouth, where outflow variations lead CSAT variations by about 2 months.  相似文献   

17.
In view of increasing environmental awareness and biodiversity conservation, understanding the main forcing mechanism driving biogeochemical cycles in coral reefs and lagoon coastal areas is a priority. La Ni?a events cause unbalanced situations in the Equatorial Pacific and result in enhanced precipitation in South West Pacific coastal areas. We investigated the impact of heavy rainfalls during the 2008 La Ni?a event on the New Caledonia lagoon using a 3D coupled on-line hydrodynamic-biogeochemical model. Simulations and data showed that the whole lagoon was impacted by river inputs and stronger hydrodynamics, enhancing chlorophyll-a concentration by a factor between 1.7 and 1.9. The coupled model provided new insights into plume transport, highlighting that eastern plumes can be advected northwards or can reach the South West Lagoon, depending on the balance between regional, tide-induced, and wind-induced surface currents. It also provided a synoptic view of lagoon biogeochemical-hydrodynamic response, when remote sensing data are not available due to cloud coverage.  相似文献   

18.
The Mississippi River (MR) freshwater outflow is a major circulation forcing mechanism for the Northern Gulf of Mexico. We investigate the transport and fate of the brackish waters under flood conditions. The largest outflow in history (45,000 m3/s in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/s in 2008). Realistically forced simulations reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters, and offshore circulation over the transport of plume waters. The strongest impact is attributed to the evolution of the Loop Current (LC) and associated frontal cyclonic eddies and anticyclonic rings, which exhibited distinctly different influence during the two study periods. The northward LC intrusion in the summer of 2011 weakened and blocked the buoyancy-driven downstream (westward) transport of brackish waters. The 2011 flood was thus characterized by upstream (eastward) flow and an extensive coverage of the Mississippi–Alabama–Florida shelf. An immediate response between the LC and the brackish offshore eastward spreading is computed during and after this historic event. The absence of a LC northward intrusion during the 2008 flood, in combination with wind effects, promotes downstream advection of MR waters towards the Louisiana–Texas shelf; large amounts of buoyant waters are also retained near the Delta, subject to local offshore advection under the synergistic action of LC-associated counter-rotating eddies.  相似文献   

19.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

20.
The spatial and temporal distribution of physical, chemical and biological variables of the NE continental shelf of the Gulf of Cadiz were analyzed monthly during almost three annual cycles. This analysis was performed with the aim of deriving the main forcing factors controlling variability at inter-annual, seasonal and short-time scales. Meteorological forcing related to heavy episodes of rainfall that affected river discharges and the wind regime, controlled both the currents along the shelf together and the nutrient concentrations of the surface waters. Meteorological forcing in turn determined the subsequent development and maintenance of phytoplankton blooms. Superimposed on the seasonal cycle typical of temperate latitudes, the inputs of continental nutrients mainly from the Guadalquivir River, along with episodes of upwelling favored by the predominance of westerly winds triggered phytoplankton growth on the shelf, highlighting the markedly relevant role of this large estuary in the control of the biological activity on the shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号