首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Sedimentation is an important stressor on coral reefs subjected to run-off, dredging and resuspension events. Reefs with a history of high-sediment loads tend to be dominated by a few tolerant coral species. A key question is whether such species live close to their tolerance thresholds or near their niche optima. Here, we analyse experimentally the sediment tolerance of a spatially dominant coral, Turbinaria mesenterina (Dendrophylliidae), at nearshore reefs in the central Great Barrier Reef lagoon. Testing was conducted in a 5-week tank experiment under manipulated sediment loading and flow conditions. Physiological stress was assessed based on the behaviour of three key response variables: skeletal growth rate, energy reserves (lipid content) and photosynthetic performance. Because sediment effects are likely to vary between flow regimes, sediment and flow responses were tested using a full factorial design. Sediment loads greater than 110 mg cm−2 had no effect on any of the physiological variables, regardless of flow (0.7–24 cm s−1). Turbinaria mesenterina is thus tolerant to sediment loads an order of magnitude higher than most severe sediment conditions in situ. Likely mechanisms for such tolerance are that: (1) colonies covered in sediment (60–120 μm) in low-flow were able to clear themselves rapidly (within 4–5 h); and (2) sediment provides a source of food. These results suggest that intensified sediment regimes on coastal reefs may shift coral communities towards dominance by a few well-adapted species.  相似文献   

2.
Given the focus on protecting natural assets in the Great Barrier Reef Marine Park in Australia, it is important for managers and policy makers to understand the value of recreational fishing in the area, and how changes in management may affect those recreational values. Travel cost methods were used to estimate the value of recreational fishing in the Capricorn Coast in Central Queensland using data from on-site surveys conducted at boat ramps. The study also uses contingent behaviour models to estimate the change in the value of recreational fishing as conditions vary. Results indicate that there are high values associated with recreational fishing activity along the Capricorn Coast, and that the demand for recreational fishing is inelastic and that values are relatively insensitive to changes in catch rates.  相似文献   

3.
Controversy surrounds the sources and transport of land derived pollutants in the Great Barrier Reef ecosystem because there is insufficient knowledge of the mechanism of movement of organic contaminants and the cycling of organic matter in this dynamic system. Thus a sediment and sediment trap study was used to describe the composition of resuspended and surface sediments in the south central Great Barrier Reef and its lagoon. This region is characterised by strong tides (6–8 m at Mackay) and trade winds regularly about 15–20 knots. A series of organic biomarkers detailed the cyclical processes of sediment resuspension, recolonising with marine algae and bacteria, packaging into zooplankton faecal pellets and resettlement to sediments where the organics undergo further diagenesis. With each cycle the inshore sediments are diluted with CaCO3 reef sediments and moved further offshore with the strong ebb tide currents. This results in transport of land derived materials offshore and little storage of organic materials in the lagoon or reef sediments. These processes were detailed by inorganic measurements such as %CaCO3 and Al/Ca ratios, and by the compositions of hydrocarbon, sterol, alcohol, and fatty acid lipid fractions. Persistent contaminants such as coal dust from a coastal loading facility can be detected in high concentration inshore and decreasing out to the shelf break at 180 m approximately 40 nautical miles offshore. The normal processes would likely be amplified during cyclonic and other storms. The lipids show the sources of carbon to include diatoms and other phytoplankton, creanaerchaeota, sulfate reducing and other bacteria, land plants including mangrove leaves, plus coal dust and other petroleum contaminants.  相似文献   

4.
The formation of incised valleys on continental shelves is generally attributed to fluvial erosion under low sea level conditions. However, there are exceptions. A multibeam sonar survey at the northern end of Australia's Great Barrier Reef, adjacent to the southern edge of the Gulf of Papua, mapped a shelf valley system up to 220 m deep that extends for more than 90 km across the continental shelf. This is the deepest shelf valley yet found in the Great Barrier Reef and is well below the maximum depth of fluvial incision that could have occurred under a − 120 m, eustatic sea level low-stand, as what occurred on this margin during the last ice age. These valleys appear to have formed by a combination of reef growth and tidal current scour, probably in relation to a sea level at around 30–50 m below its present position.

Tidally incised depressions in the valley floor exhibit closed bathymetric contours at both ends. Valley floor sediments are mainly calcareous muddy, gravelly sand on the middle shelf, giving way to well-sorted, gravely sand containing a large relict fraction on the outer shelf. The valley extends between broad platform reefs and framework coral growth, which accumulated through the late Quaternary, coincides with tidal current scour to produce steep-sided (locally vertical) valley walls. The deepest segments of the valley were probably the sites of lakes during the last ice age, when Torres Strait formed an emergent land-bridge between Australia and Papua New Guinea. Numerical modeling predicts that the strongest tidal currents occur over the deepest, outer-shelf segment of the valley when sea level is about 40–50 m below its present position. These results are consistent with a Pleistocene age and relict origin of the valley.

Based on these observations, we propose a new conceptual model for the formation of tidally incised shelf valleys. Tidal erosion on meso- to macro-tidal, rimmed carbonate shelves is enhanced during sea level rise and fall when a tidal, hydraulic pressure gradient is established between the shelf-lagoon and the adjacent ocean basin. Tidal flows attain a maximum, and channel incision is greatest, when a large hydraulic pressure gradient coincides with small channel cross sections. Our tidal-incision model may explain the observation of other workers, that sediment is exported from the Great Barrier Reef shelf to the adjacent ocean basins during intermediate (rather than last glacial maximum) low-stand, sea level positions. The model may apply to other rimmed shelves, both modern and ancient.  相似文献   


5.
The fluxes of dissolved inorganic N, P, and Si from the nearshore sediments of the Great Barrier Reef Lagoon are significantly lower than those reported from sediments in temperate regions at similar temperatures. The directly measured fluxes range from −23 to +28, −154 to +890, and −990 to +1750 μmol m−2 day−1 for PO43−, ΣN(=NH4+ + NO2 + NO3) and Si, respectively. Estimates suggest that sediments are the major source of dissolved N to near-shore waters of the Lagoon greatly exceeding the dissolved flux from rivers. Resuspension of up to 1 cm of sediment during storms would have a very small effect on the PO43− or Si(OH)4 concentration of the overlying water, but would significantly raise the ΣN concentration. The productivity of these waters may be controlled at various times by the balance between the steady-state sedimentary flux of nutrients, the fluvial input, and storm resuspension.  相似文献   

6.
Marine protected management has gained acceptance as a way forward to achieve enhanced biodiversity outcomes. Simultaneously, co-management has gathered momentum as a mechanism to incorporate indigenous cultural aspirations within environmental management domains. Each management process has its own methodologies; when the two models intersect, they present a number of challenges to overall management outcomes. We review the journey of an indigenous co-management initiative within a marine protected area (MPA), the Great Barrier Reef World Heritage Area (GBRWHA), Australia, to explore how different management paradigms intersect with both negative and positive results. We argue that lessons learned from this initiative will help participants to adapt and innovate, so as to implement effective on ground management despite the region being a contested site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号