共查询到5条相似文献,搜索用时 15 毫秒
1.
Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (k-value), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated. 相似文献
2.
面向测绘地理信息产业发展高端化,高职院校如何培养技能人才成为当前研究的热点。通过开展企业调研,企业对地理信息系统技术及应用(87.5%)、无人机测绘技术(84.7%)、工程测量(79.2%)技能较为重视,学生普遍缺乏测绘及GIS软件操作与应用(68.1%)、测绘仪器使用和维护(65.3%)、操作无人机进行信息采集与处理(56.9%)能力。本文提出“岗课证赛”融通的测绘地理信息人才培养模式,把企业岗位任务、职业认证及技能大赛的能力要求融入课程,使学生具备掌握与未来职业岗位需求相吻合的技能,适应测绘地理信息产业发展高端化。 相似文献
3.
Chen Wang David Miller Iain Brown Yang Jiang Marie Castellazzi 《International Journal of Digital Earth》2016,9(6):586-605
Mitigating and adapting to climate change includes a requirement to evaluate the role of future land uses in delivering robust integrated responses that are sensitive to local landscape contexts. In practice, this emphasises the need for community engagement, planning and inclusive decision-making. Community engagement may be potentially facilitated by the use of spatially explicit quantitative scenarios of land-use change in combination with interactive visualisation. This requires a coherent framework to integrate spatial data modelling, analytical capabilities and visualisation tools in a format that will also engage diverse public audiences. These challenges were explored with a case study of virtual landscapes from N-E Scotland that was used to test preferences for scenarios of future land use. Visualisations employed texture-based rendering rather than full photo-realistic rendering to facilitate interactivity and this provided additional scope for audiences to explore multiple future scenarios compared to the present landscape. Interactive voting in a virtual landscape theatre suggested preferences for visual diversity, good stewardship and perceived naturalness that should be considered in developing planned responses to change. Further investigation of preferences was conducted using interactive 3D features located within the landscape. Study findings are reviewed against objectives for inclusive engagement in the Digital Earth agenda and used to make further recommendations on the use of scenarios and visualisation tools. In particular, technical advances in user engagement need to be developed in conjunction with emerging good practice that addresses ethical, behavioural and inclusion issues so that the content is presented in as transparent and unbiased format as possible. 相似文献
4.
A general framework for error analysis in measurement-based GIS Part 4: Error analysis in length and area measurements 总被引:2,自引:1,他引:2
This is the final of a series of four papers on the development of a general framework for error analysis in measurement-based geographic information systems (MBGIS). In this paper, we discuss the error analysis problems in length and area measurements under measurement error (ME) of the defining points. In line with the basic ME model constructed in Part 1 of this series, we formulate the ME models for length and area measurements. For length measurement and perimeter measurement, the approximate laws of error propagation are derived. For area measurement, the exact laws of error propagation are obtained under various conditions. An important result is that area measurement is distributed as a linear combination of independent non-central chi-square variables when the joint ME vectors of vertices coordinates are normal. In addition, we also give a necessary and sufficient condition under which the area measurement estimator is unbiased. As a comparison, the approximate law of error propagation in area measurement is also considered and its approximation is substantiated by numerical experiments.This project was supported by the earmarked grant CUHK 4362/00H of the Hong Kong Research grant Council. 相似文献
5.
A general framework for error analysis in measurement-based GIS Part 1: The basic measurement-error model and related concepts 总被引:4,自引:1,他引:4
This is the first of a four-part series of papers which proposes a general framework for error analysis in measurement-based geographical information systems (MBGIS). The purpose of the series is to investigate the fundamental issues involved in measurement error (ME) analysis in MBGIS, and to provide a unified and effective treatment of errors and their propagation in various interrelated GIS and spatial operations. Part 1 deals with the formulation of the basic ME model together with the law of error propagation. Part 2 investigates the classic point-in-polygon problem under ME. Continuing to Part 3 is the analysis of ME in intersections and polygon overlays. In Part 4, error analyses in length and area measurements are made. In this present part, a simple but general model for ME in MBGIS is introduced. An approximate law of error propagation is then formulated. A simple, unified, and effective treatment of error bands for a line segment is made under the name of covariance-based error band. A new concept, called maximal allowable limit, which guarantees invariance in topology or geometric-property of a polygon under ME is also advanced. To handle errors in indirect measurements, a geodetic model for MBGIS is proposed and its error propagation problem is studied on the basis of the basic ME model as well as the approximate law of error propagation. Simulation experiments all substantiate the effectiveness of the proposed theoretical construct.This project was supported by the earmarked grant CUHK 4362/00H of the Hong Kong Research grants Council. 相似文献