首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The Jinnosuke-dani landslide is a giant landslide 2,000 m long and 500 m wide in the Haku-san Mountain area, Japan. It was also the first landslide to be designated as a “Landslide Prevention Area” according to the “Japan Landslide Prevention Law.” This landslide consists of alternating layers of sandstone and shale in the Tedori Formation, which was deposited from the Jurassic period to the Early Cretaceous. Based on deformation monitoring results for more than 7 years, the landslide is divided into upper and lower blocks. The upper block has moved at a speed of 80 to 170 mm/year, while the lower block has moved more slowly (3 to 15 mm/year). Monitoring data show that the variation of the groundwater level has a great influence on the landslide movement. The deteriorating effect of the weathering of the alternating layers of sandstone and shale on the landslide deformation has been confirmed by borehole exploration and monitoring.  相似文献   

2.
Understanding the causes of slope development, particularly the initiation of movement, requires knowledge of a set of factors (usually associated with groundwater) that are often difficult to determine. To perform a back-analysis of the failure conditions of the silty-clay terrains underlying the monastery of San Francis, which was built on the slope of the Valle della Torre, at Pietrapertosa (Potenza), the slope was analyzed by means of a limit-equilibrium approach, to determine the stability coefficient (F s) in relation to the pore water pressure regime. It has been possible to apply linear regression to establish a relation between rainfall and fluctuations of the water table in long duration records of both and thus to obtain the amount of rainfall that is likely to correspond to the critical value of the piezometric level at which the weathered silty-clay material will fail. In this way, the difficulty of applying the various simulations that define the complex relationships between water infiltration and water table recharge has been avoided. In the study area, the hydrological behavior of the 12-m thick weathered horizon has been represented by flow lines, which, in section, are equipotential lines parallel to the slope.  相似文献   

3.
Polyphase metamorphic paragneisses from the drill core of the continental deep drilling project (KTB; NW Bohemian Massif) are characterized by peak pressures of about 8 kbar (medium‐P metamorphism) followed by strain accumulation at T >650 °C, initially by dislocation creep and subsequently by diffusion creep. U–Pb monazite ages and Rb–Sr whole‐rock data vary in the dm‐scale, indicating Ordovician and Mid‐Devonian metamorphic events. Such age variations are closely interconnected with dm‐scale domainal variations of microfabrics that indicate different predominant deformation mechanisms. U–Pb monazite age variations dependent on microfabric domains exceed grain‐size‐dependent age variations. In ‘mylonitic domains’ recording high magnitudes of plastic strain, dislocation creep and minor static annealing, monazite yields concordant and near concordant Lower Ordovician U–Pb ages, and the Rb–Sr whole‐rock system shows isotopic disequilibrium at an mm‐scale. In ‘mineral growth/mobilisate domains’, in which diffusive mass transfer was a major strain‐producing mechanism promoting diffusion creep of quartz and feldspar, and in which static recrystallization (annealing) reduced the internal free energy of the strained mineral aggregates, concordant U–Pb ages are Mid‐Devonian. Locally, in such domains, Rb–Sr dates among mm3‐sized whole‐rock slabs reflect post‐Ordovician resetting. In ‘transitional domains’, the U–Pb‐ages are discordant. We conclude that medium‐P metamorphism occurred at 484±2 Ma, and a second metamorphic event at 380–370 Ma (Mid‐Devonian) caused progressive strain in the rocks. Dislocation creep at high rates, even at high temperatures, does not reset the Rb–Sr whole‐rock system, while diffusion creep at low rates and stresses (i.e. low ε/Deff ratios), static annealing and the presence of intergranular fluids locally assist resetting. At temperatures above 650 °C, diffusive Pb loss did not reset Ordovician U–Pb monazite ages, and in domains of overall high imposed strain rates and stresses, resetting was not assisted by dynamic recrystallization/crystal plasticity. However, during diffusion creep at low rates, Pb loss by dissolution and precipitation (‘recrystallization’) of monazite produces discordance and Devonian‐concordant U–Pb monazite ages. Hence, resetting of these isotope systems reflects neither changes of temperature nor, directly, the presence or absence of strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号