首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary After a short reference made to the utility, having regard on maritime structures, and particularly on vertical wall breakwaters, of knowledge on the centurial observations on the storm wave height and the depth of water breaking wave or breaking hydrogeological on the bottom of Mediterranean Sea, because of the subaqueous source, are here shown the correlations among the waves characteristics and the morphological configuration of the continental-shelf, of the fetch, of the winds, of the sedimentation, of the stereophotogrammetry at the stormy sea surface. It is here likewise stated the analogical parallelism between the atomical disintegration and the transformation from potential energy of the oscillatory wave till kinetic energy of breaking waves.  相似文献   

2.
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.  相似文献   

3.
Wave breaking statistics, such as the whitecap coverage and average volume of broken seawater, are evaluated in terms of wave parameters by use of wave breaking model (Yuan et al., 1988) taking the fifth order Stokes's wave as the analog of the original wave field. Based on the observed fact that breaking waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean, the influence of wave breaking on air-sea fluxes of heat and moisture is investigated. Theoretical expressions of bubble-volume flux and sea spray spectrum at the sea surface and models for bubble-induced and spray droplet-induced heat and moisture fluxes are established. This work can be taken as the basis for further understanding the mechanism of air-sea coupling and parameterization models.  相似文献   

4.
Wave breaking statistics, such as the whitecap coverage and average volume of broken seawater, are evaluated in terms of wave parameters by use of wave breaking model (Yuan et al., 1988) taking the fifth order Stokes's wave as the analog of the original wave field. Based on the observed fact that breaking waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean, the influence of wave breaking on air-sea fluxes of heat and moisture is investigated. Theoretical expressions of bubble-volume flux and sea spray spectrum at the sea surface and models for bubble-induced and spray droplet-induced heat and moisture fluxes are established. This work can be taken as the basis for further understanding the mechanism of air-sea coupling and parameterization models.  相似文献   

5.
Wave breaking statistics, such as the whitecap coverage and average volume of broken seawater, are evaluated in terms of wave parameters by use of wave breaking model (Yuan et al., 1988) taking the fifth order Stokes’s wave as the analog of the original wave field. Based on the observed fact that breaking waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean, the influence of wave breaking on air-sea fluxes of heat and moisture is investigated. Theoretical expressions of bubble-volume flux and sea spray spectrum at the sea surface and models for bubble-induced and spray droplet-induced heat and moisture fluxes are established. This work can be taken as the basis for further understanding the mechanism of air-sea coupling and parameterization models.  相似文献   

6.
We analyze far-field Rayleigh and tsunami waves generated by the 1998 Papua New Guinea (PNG) earthquake. Using the normal mode theory and Thomson-Haskell matrix formalism we calculate synthetic mareograms of oceanic surface waves excited by finite-dimensional line source and propagated in a flat, multilayered oceanic structure. Assuming that the source of destructive sea waves was the main shock of the PNG event and based on the expression for seismic wave displacement in the far-field zone, we compute the energy of the seismic and tsunami waves and the Ez /Ets ratio. The results of our modeling are generally consistent with those obtained empirically for events with magnitude 7. Also, treating the results of a submarine slide as a single solitary wave and using the theoretical arguments of Striem and Miloh (1976) we estimate the energy of the tsunami induced by a landslide. The difference between the energy of the seismic tsunami and of the aseismic one is about one order of magnitude.The results of our theoretical modeling show that surface sea waves in the far-field zone account well for seismic origin, although additional tsunami energy from a landslide source could be required to explain the local massive tsunami in the Sissano Lagoon.  相似文献   

7.
This paper addresses the spatial and temporal patterns of drivers for sediment dynamics in coastal areas. The basic assumption is that local processes are dominating. The focus is put on the bed shear stress in the southern part of North Sea giving the basic control for deposition–sedimentation and resuspension–erosion. The wave-induced bed shear stress is formulated using a model based on the concept that the turbulent kinetic energy associated with surface waves is a function of orbital velocity, the latter depending on the wave height and period, as well as on the water depth. Parameters of surface waves are taken from simulations with the wave spectrum model WAM (wave model). Bed shear stress associated with currents is simulated with a 3D primitive equation model, Hamburg Shelf Ocean Model. Significant wave height, bed shear stress due to waves and currents, is subjected to empirical orthogonal functions (EOF) analysis. It has been found that the EOF-1 of significant wave height represents the decrease of significant wave height over the shallows and, due to fetch limitation, along the coastlines. Higher order modes are seesaw-like and, in combination, display a basin-scale rotational pattern centred approximately in the middle of the basin. Similar types of variability is also observed in the second and third EOF of bed shear stress. Surface concentrations of suspended matter derived from MERIS satellite data are analysed and compared against statistical characteristics of bed shear stress. The results show convincingly that the horizontal distribution of sediment can, to a larger extent, be explained by the local shear stress. However, availability of resuspendable sediments on the bottom is quite important in some areas like the Dogger Bank.  相似文献   

8.
Vertical mixing of oil droplets by breaking waves   总被引:2,自引:0,他引:2  
Oil spilled on a sea surface can be dispersed by a variety of natural processes, of which the influence of breaking waves is dominant. Breaking waves are able to split the slick into small droplets, facilitating oil mixing in the water column. Vertical dynamics of the droplets plays a major role in the oil mass exchange between the slick and the water column. In this paper a mathematical model of oil droplet mixing by breaking waves is developed. The model uses a kinetic approach to describe the vertical exchange of the droplets at the interface between the slick and the water column. The majority of the coefficients and parameters are conveniently combined into a single "mixing factor". The model is verified using sensitivity analysis and empirical formulae of other authors. The model permits a rapid estimation of the amount of dispersed oil under the breaking waves. The ultimate goal of the research is to parameterise influence of breaking waves on vertical mixing of oil droplets to be used in a general 3-D oil spill model.  相似文献   

9.
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.  相似文献   

10.
The objective of the research is to analyze in detail the causes and consequences of the unusual event at the coast of Guyana (South America) during October 16–19, 2005. Several sea defense structures were damaged and flooding of low-lying areas occurred. A data analysis of offshore wave and water level characteristics shows an abrupt change in wave direction from east to almost north on October 16, 2005 and a sudden increase in the offshore peak period up to extreme values. The offshore significant wave height was also relatively high, and these wave characteristics coincided with springtide conditions. The long-wave periods and the sharp transition in wave direction indicate that this event is associated with swell waves generated by a depression far away. An analysis of hurricanes and depressions reveals that a severe depression in the Northern Atlantic Ocean during October 11–15 was the origin of this swell event. Numerical computations with SWAN have been carried out to investigate the propagation of the offshore wave characteristics towards the shoreline. The SWAN model includes wave damping due to the presence of soft mud deposits. A calibration of the parameters has been carried out using joint offshore and onshore wave data from November 2006. The numerical simulations of the event in October 2005 clearly demonstrate that the mud banks damp the wave heights, but have almost no effect on the peak period. The resulting waves at the steep sea walls can be classified as surging waves causing severe runup and overtopping. The obtained insights are translated into practical recommendations for the Guyana Sea and River Defence Division in Guyana to build a sustainable management and maintenance of the sea defenses in the future.  相似文献   

11.
Currently, the study on the active fault in the land areas is relatively mature, while there is still lack of detection and research on active faults in the sea areas. Marine exploration, which is different from land areas, has a prominent problem due to the existence of strong reflecting interfaces such as water surface and seafloor in the sea, thus the recording is often accompanied by interference of multiples on seafloor reflections. In addition, because of the characteristics of marine seismic exploration, the source exciting in the water and the geophone receiving in the water, ghost wave usually can be recorded simultaneously during the reflected wave propagation. This phenomenon makes it difficult to distinguish the effective waves and the noise, and has always plagued the data and seriously affects the quality of records. In the offshore and other regions of complex structures, such as inclined interfaces, it is difficult to eliminate the interference of multiples accurately by traditional multiples suppression methods, which are based on the horizontal interface assumption. This paper combines the sea area seismic data and its acquisition method, uses simplified model to simulate the multiples based on the time-distance analysis of multiples and their ghost wave in inclined interface. The time-distance characteristics of the multiples and their ghost waves from different interfaces(including the inclined interface)are obtained, and they are consistent with the actual records. The multiples time-distance simulation can help to distinguish the causes of reflected waves, summarize the multiple-wave time-distance characteristics from different interfaces(including inclined interfaces), and analyze the relationship between the characteristics of multiple waves and primary waves. In particular, this simulation has a significant effect on characterizing the internal multiples that are difficult to identify due to inconspicuous periodicity and the multiples of the inclined interface which present the phenomenon that the vertex of the time-distance curve is shifted. On this basis, relying on the time-distance analysis of ghost wave, we analyze the travel time difference characteristics between reflected waves and their accompanying ghost waves. The differences of the travel time characteristics of different orders ghost wave and reflected wave are summarized and the symmetry of the travel time difference between inclined interface and horizontal interface of ghost waves and reflected waves is analyzed. We simulate the distraction of the ghost wave event with the event of the reflected wave and analyze the influence of the ghost wave on the sea area seismic records. These results can improve the practical interpretation of seismic data. At last, the time-distance information is used to synthesize sea area seismic records, which can help us carry out the effective data processing and understand the characteristics of the time-distance and velocity of multiples in different interfaces and the layer artifact caused by multiples. This study combines the time-distance simulation of multiples and their ghost wave with conventional seismic data processing to analyze the pre-stack and post-stack features of multiple waves and their ghost waves in the seismic records of the sea area. The results of this study are conducive to the effective identification of multiples in seismic records in the sea, provide a theoretical basis for multi-wave suppression and prediction, and may facilitate the future study of sea-area seismic activity detection.  相似文献   

12.
The differentially heated rotating annulus is a laboratory experiment historically designed for modelling large-scale features of the mid-latitude atmosphere. In the present study, we investigate a modified version of the classic baroclinic experiment in which a juxtaposition of convective and motionless stratified layers is created by introducing a vertical salt stratification. The thermal convective motions are suppressed in a central region at mid-depth of the rotating tank, therefore double-diffusive convection rolls can develop only in thin layers located at top and bottom, where the salt stratification is weakest. For high enough rotation rates, the baroclinic instability destabilises the flow in the top and the bottom shallow convective layers, generating cyclonic and anticyclonic eddies separated by the stable stratified layer. Thanks to this alternation of layers resembling the convective and radiative layers of stars, the planetary’s atmospheric troposphere and stratosphere or turbulent layers at the sea surface above stratified waters, this new laboratory setup is of interest for both astrophysics and geophysical sciences. More specifically, it allows to study the exchange of momentum and energy between the layers, primarily by the propagation of internal gravity waves (IGW). PIV velocity maps are used to describe the wavy flow pattern at different heights. Using a co-rotating laser and camera, the wave field is well resolved and different wave types can be found: baroclinic waves, Kelvin and Poincaré type waves. The signature of small-scale IGW can also be observed attached to the baroclinic jet. The baroclinic waves occur at the thin convectively active layer at the surface and the bottom of the tank, though decoupled they show different manifestation of nonlinear interactions. The inertial Kelvin and Poincaré waves seem to be mechanically forced. The small-scale wave trains attached to the meandering jet point to an imbalance of the large-scale flow. For the first time, the simultaneous occurrence of different wave types is reported in detail for a differentially heated rotating annulus experiment.  相似文献   

13.
Observations of turbulent dissipation rates measured by two independent instruments are compared with numerical model runs to investigate the injection of turbulence generated by sea surface gravity waves. The near-surface observations are made by a moored autonomous instrument, fixed at approximately 8 m below the sea surface. The instrument is equipped with shear probes, a high-resolution pressure sensor, and an inertial motion package to measure time series of dissipation rate and nondirectional surface wave energy spectrum. A free-falling profiler is used additionally to collect vertical microstructure profiles in the upper ocean. For the model simulations, we use a one-dimensional mixed layer model based on a kε type second moment turbulence closure, which is modified to include the effects of wave breaking and Langmuir cells. The dissipation rates obtained using the modified kε model are elevated near the sea surface and in the upper water column, consistent with the measurements, mainly as a result of wave breaking at the surface, and energy drawn from wave field to the mean flow by Stokes drift. The agreement between observed and simulated turbulent quantities is fairly good, especially when the Stokes production is taken into account.  相似文献   

14.
The 1D version of the Model for Applications at Regional Scale is used to parameterize the effects of sea surface waves in 2D in a horizontally homogeneous offshore zone of the Iroise sea. Here we present the first simulation of the Iroise sea including sea surface waves forcing, and more generally, the first study of a boundary layer including the Hasselmann force with a tidal wave. We use a single equation turbulence closure based on a non-local diagnosis for energetic and dissipation length scales. The turbulent energy flux at the surface due to whitecaps and the Hasselmann force induced by Stokes drift are assessed using the whole sea surface waves spectrum given by the Wave Watch Third generation model. The ability of the parameterization to reproduce surface currents over a period of 1 year (2007) is tested with high frequency radar using spectral and time-frequency analysis. One problem with 1D modelling, corresponding to overestimation of current oscillating at inertial frequency is illustrated by comparing 1D and 3D simulations. We found an overall improvement by including the Hasselmann force mainly within the bandwidth of less than one cycle per day to one cycle per day for surface currents. Turbulence is induced by whitecaps decaying rapidly below the ocean surface but the mixed layer below 40 m is deeper due to waves breaking on the sea surface.  相似文献   

15.
The problem of a sinusoidal wave crest striking an adverse slope due to gradual elevation of the bed is relevant for coastal sea waves. Turbulence based RANS equations are used here under turbulence closure assumptions. Depth-averaging the equations of continuity and momentum, yield two differential equations for the surface elevation and the average forward velocity. After nondimensionalization, the two equations are converted in terms of elevation over the inclined bed and the discharge, where the latter is a function of the former satisfying a first order differential equation, while the elevation is given by a first order evolution equation which is treated by Lax-Wendroff discretization. Starting initially with a single sinusoidal crest, it is shown that as time progresses, the crest leans forwards, causing a jump in the crest upfront resulting in its roll over as a jet. Three cases show that jump becomes more prominent with increasing bed inclination.  相似文献   

16.
Measurements of significant wave height are made routinely throughout the world’s oceans, but a record of the sea surface elevation (η) is rarely kept. This is mostly due to memory limitations on data, but also, it is thought that buoy measurements of sea surface elevation are not as accurate as wave gauges mounted on stationary platforms. Accurate records of η which contain rogue waves (defined here as an individual wave at least twice the significant wave height) are of great interest to scientists and engineers. Using field data, procedures for tilt correcting and double integrating accelerometer data to produce a consistent record of η are given in this study. The data in this study are from experimental buoys deployed in the recent Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment which occurred in 2010. The statistics from the ITOP buoys is under that predicted by Rayleigh theory, but matches the distributions of Boccotti and others (Tayfun and Fedele) (Ocean Eng 34:1631-1649, 2007). Rogue waves were recorded throughout the experiment under various sea state conditions. Recommendations, as a result of lessons learned during ITOP, are made for the routine recording of η which may not add significantly to the existing data burden. The hope is that we might one day collect a worldwide database of rogue waves from the existing buoy network, which would progress our understanding of the rogue wave phenomenon and make work at sea safer.  相似文献   

17.
Abstract

The problem of unsteady long waves generated by any horizontal and symmetrically distributed, time-periodic surface wind on a rotating ocean is analysed for large times and distances. Uniform asymptotic estimates of the surface displacement in the unsteady state are obtained. The steady-state wave and velocity fields at any distance are also determined. Some characteristics of the unsteady and steady motions are described. Also noted are the features that distinguish the motion from its one-dimensional analogue for which a non-uniform analysis in the unsteady state along with a large-distance form of the surface elevation are already known.  相似文献   

18.
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642–658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.  相似文献   

19.
The rough sea surface causes perturbations in the seismic data that can be significant for time‐lapse studies. The perturbations arise because the reflection response of the non‐flat sea perturbs the seismic wavelet. In order to remove these perturbations from the received seismic data, special deconvolution methods can be used, but these methods require, as input, the time varying wave elevation above each hydrophone in the streamer. In addition, the vertical displacement of the streamer itself must also be known at the position of each hydrophone and at all times. This information is not available in conventional seismic acquisition. However, it can be obtained from the hydrophone measurements provided that the hydrophones are recorded individually (not grouped), that the recording bandwidth is extended down to 0.05 Hz and that data are recorded without gaps between the shot records. The sea surface elevation, and also the wave‐induced vertical displacement of the streamer, can be determined from the time‐varying pressure that the sea waves cause in the hydrophone measurements. When this was done experimentally, using a single sensor seismic streamer without a conventional low cut filter, the wave induced pressure variations were easily detected. The inversion of these experimental data gives results for the sea surface elevation that are consistent with the weather and sea state at the time of acquisition. A high tension approximation allows a simplified solution of the equations that does not demand a knowledge of the streamer tension. However, best results at the tail end of the streamer are obtained using the general equation.  相似文献   

20.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号