首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of tidal constituents and the transfer of energy from the tidal frequencies to other frequencies are investigated using 3-D tidal simulations for the Indonesian seas, focusing on an area of active internal tides. Semidiurnal tides strongly affect diurnal tides; however, semidiurnal tides are essentially unaffected by diurnal tides. The semidiurnal and diurnal constituents interact with each other through non-linear interference, both destructive and constructive. Semidiurnal tides generate harmonics at nearly the diurnal frequency and higher vertical wavenumbers. In Ombai Strait, these harmonics are out of phase with the diurnal tides and interact destructively with the diurnal tides, effectively negating the diurnal response in some locations. However, this is not a general response, and interactions differ between locations. Energy is also transferred from both semidiurnal and diurnal tides to other frequencies across the spectrum, with more energy originating from semidiurnal tides. These energy transfers are not homogeneous, and the spectral responses differ between the Makassar and Ombai Straits, with the region east of Ombai showing a more active surface response compared to a more intense benthic response in Makassar. In deep water away from topography, velocity spectra generally follow the Garrett–Munk (GM) relation. However, in areas of internal tide generation, spectral density levels exceed GM levels, particularly between 4 and 8 cycles per day (cpd), indicating increased non-linear interactions and energy transfer through resonant interactions. The model indicates strong surface trapping of internal tides, with surface velocity spectra having significantly higher energy between 4 and 8 cpd even 100 km away from the prominent sill generating the internal tides.  相似文献   

2.
《Continental Shelf Research》2005,25(9):1023-1042
Four bottom-mounted current profilers were deployed across the Taiwan Strait from September 28 to December 14 of 1999 to monitor the current velocity when the northeast monsoon was strong. Results indicate both diurnal and semidiurnal tidal currents were primarily barotropic. The barotropic diurnal tide might be explained by a single Kelvin wave propagating along the Mainland China coast from north to south. However, the barotropic semidiurnal tide manifested as a more complicated form in the Taiwan Strait.The subtidal current generally fluctuated with the northeast winds. When the northeast wind was weak, the along- and cross-strait subtidal current flowed primarily against the wind and toward Taiwan, respectively. As the northeast wind intensified, the along-strait current flowed downwind, brought the cold China coastal water southward, and formed a baroclinic velocity front in the western portion of the Taiwan Strait. The Ekman effect forced the cross-strait current toward Mainland China in the upper water column and toward Taiwan in the lower water column, respectively. The along-strait volume transport, estimated from interpolated current velocity, varied from −5 to 2 Sv with a mean value of 0.12±0.33 Sv. Similar transport was also estimated from the sea level difference across the Taiwan Strait.Although the local wind played a dominant role for the fluctuations of current velocity and transport in the Taiwan Strait, it could be not the only important factor. The current or transport directed frequently against the wind could be related to the northward current, which was consistently observed in the Penghu Channel.  相似文献   

3.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

4.
Abstract

Tidal pressures and currents were measured with self‐contained capsules dropped to the sea floor for one month at distances of 175, 190, and 500 nautical miles from San Diego. These observations, together with a one‐week bottom pressure record by Filloux at 750 n miles, and three half‐week bottom current records by Isaacs et al, at intermediary distances, were analyzed for tidal components by cross‐correlation with a noise‐free reference time series. (For short records this method has some merit over classical tide analysis.) It was found that the tide decays seaward to e‐1 times the coastal amplitude over a distance of order 1000 km for the semidiurnal species, slower for the diurnal species. Tidal currents turn counterclockwise, and are polarized with maximum flow parrallel to shore in the direction of tidal propagation (320°T) at local high tide. The current amplitude is roughly 2 cm/sec for the semidiurnal component, 1 cm/sec for the diurnal component. Superimposed baroclinic tidal currents lead to poor signal: noise ratios (between 1:1 and 10:1) for the barotropic currents. In contrast, the ratio is typically 1000:1 for the bottom pressures and generally exceeds that for coastal tide stations of comparable duration. Published I.H.B. tidal constants for exposed California coastal stations indicate “upshore” (towards 320°T) propagation at 140 m/sec for semidiurnal tides. 214 m/sec for diurnal tides.

To interpret these diverse observations, we have computed the dispersion laws for all possible rotationally‐gravitationally trapped waves against a straight coast with shelf. Trapped solutions are conveniently portrayed in terms of a parameter μ such that ? = sin μ = iu/v and f = ‐ cos μ = η/v define the ellipticity and impedance of the wave motion, η, u and v being off‐shelf dimensionless elevation, normal‐to‐shore and longshore components of velocity, respectively. We then attempt to fit the observations by a superposition of the possible wave classes, all of the same tidal frequency: (a) a free Kelvin‐like edge wave with small μ (mostly trapped by rotation, but somewhat slowed by the shelf); (6) a free Poincare‐like leaky wave; and (c) a forced wave (the distortion of the sea bottom by the tide producing forces plays a significant role). The mod el can account for the main features of the observed tidal heights, and gives relative amplitudes at the coast of 54:16:4 cm for components a:b:c in the case of the semidiurnal tides, 21:24:9 cm for the diurnal tides. The results place a semidiurnal amphidrome about midway between San Diego and Hawaii. Tidal currents are not well fitted by the model, and there are problems associated with the separation of barotropic and baroclinic modes, and with the benthic boundary layer. Coastal energy dissipation is small in the sea under investigation, but a “ capacitive “ phase delay appears to be associated with Northern California harbors and inland waters.  相似文献   

5.
In the first part of this paper (Deshcherevskii and Sidorin, 2012b), the spectra and periodograms of time series of earthquakes in Greece were studied for various magnitude ranges and five calendar epochs. As the main result, the stable diurnal (24-h) and semidiurnal (12-h) periodicities of earthquakes were revealed. Periodicities of small amplitude related to tidal waves M2 and O1 were also revealed in some samplings. This part of the paper deals with the problems of searching for tidal effects in seismicity with traditional techniques. An alternative approach of the task is applied. The time series of earthquakes with various magnitude and representativity (magnitude of completeness) were formed. Correlation coefficients of all the time series of earthquakes were calculated with the following theoretical tide parameters: volume deformation, strain rate, module of strain rate, and smoothed diurnal tidal amplitude. Stable significant correlation of seismicity was revealed with some tidal parameters. However, it can be a result of coincidence in periods of subharmonics of diurnal seismicity rhythm with the solar tidal waves. It means that the correlation discovered could be simply caused with coincidence of two regular components in variations of the compared processes but not with gravitational tide.  相似文献   

6.
武汉台重力潮汐长期观测结果   总被引:5,自引:1,他引:4       下载免费PDF全文
采用武汉台超导重力仪(SG C032)14年多的长期连续观测资料,研究了固体地球对二阶和三阶引潮力的响应特征,精密测定了重力潮汐参数,系统研究了最新的固体潮模型和海潮模型在中国大陆的有效性.采用最新的8个全球海潮模型计算了海潮负荷效应,从武汉台SG C032的观测中成功分离出63个2阶潮汐波群和15个3阶潮汐波群信号,3阶潮波涵盖了周日、半日和1/3日三个频段.重力潮汐观测的精度非常高,标准偏差达到1.116 nm·s-2,系统反映了非流体静力平衡、非弹性地球对2阶和3阶引潮力的响应特征.结果表明,现有的武汉国际重力潮汐基准在半日频段非常精确,但在周日频段存在比较明显的偏差,需要进一步精化.对于中国大陆的大地测量观测,固体潮可以采用Dehant等考虑地球内部介质非弹性和非流体静力平衡建立的固体潮理论模型或Xu 等基于全球SG观测建立的重力潮汐全球实验模型作为参考和改正模型,海潮负荷效应应该采用Nao99作为改正模型.  相似文献   

7.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   

8.
Tidal and residual currents in the Bransfield Strait,Antarctica   总被引:1,自引:0,他引:1  
During the 1992–1993 oceanographic cruise of the Spanish R/V Hespérides, recording equipment was deployed in the Bransfield Strait. Six Aanderaa RCM7 current meters and three Aanderaa WLR7 tide gauges were successfully recovered after an operation period of 2.5 months. Relevant features of the time series obtained are presented and discussed in this paper. The emphasis is placed on the tidal character of the currents and the relative importance of tidal flow in the general hydrodynamics of the strait. For these purposes a dense grid of hydrographic stations, completed during the BIOANTAR 93 cruise, is used. Preliminary geostrophic calculations relative to a 400 m depth, yield current velocities of around 0.20 m s−1 in the study area, whereas the magnitude of tidal currents is seen to be 0.30-0.40 m s−1.  相似文献   

9.
Based on the horizontal winds measured using SKiYMET meteor wind radar during the period of June 2004–May 2007, the seasonal and interannual variability of the diurnal and semidiurnal amplitudes and phases in the mesospheric and lower thermospheric (MLT) region over a low-latitude station Trivandrum (8.5°N) are investigated. The monthly values of amplitudes and phases are calculated using a composite day analysis. The zonal and meridional diurnal tidal amplitudes exhibit both annual and semiannual oscillations. The zonal and meridional components of semidiurnal tide show a significant annual oscillation. The phase values of both diurnal and semidiurnal tides exhibit annual oscillation above 90 km. The effect of background wind in the lower atmosphere on the strength of diurnal tidal amplitudes in the MLT region is studied. The effect of diurnal tides on the background wind in the lower thermosphere is also discussed.  相似文献   

10.
Current meter measurements from the west coast South Island New Zealand continental slope exhibit flows with dominant time scales of between 1 and 4 weeks as well as the expected diurnal and semidiurnal tides. The alongshore Doodson filtered daily mean flow components are marginally correlated with the alongshore wind. The onshore flow components are marginally correlated with the envelope of the square of the semidiurnal and diurnal tidal flow, which is taken as a measure of energy loss from the tide.Observations from the southern flank of the Challenger Plateau, 200 km north of the continental slope observations and further offshore, also exhibit similar long-period variations. However, here the alongshore flow is more strongly correlated with alongshore wind than at the southern site.  相似文献   

11.
To clarify the generation and dissipation mechanisms of diurnal coastal-trapped waves (CTWs) over the Sakhalin shelf, a series of numerical experiments were conducted using a three-dimensional tidal model of the Okhotsk Sea with density stratification. The tidal model used has good reproduction owing to the careful fitting to the recent observations. The numerical experiments suggested that diurnal CTWs are primarily (~60%) generated by the conversion of tidal energy at the northern corner of the Sakhalin shelf, and further amplified by vorticity generation due to the water column oscillation from Sakhalin Bay and the influence of Kashevarov Bank. From the observations, it was found that diurnal CTWs are effectively dissipated by the strong spin-down due to bottom friction. The conventional turbulent closure model cannot reproduce the observed damping of diurnal CTWs, which raises a caution in modeling the tidal fields in high-latitude regions where diurnal CTWs exist. To resolve this underestimation of the damping, the vertical eddy viscosity was parameterized using its dependence on the observed major axis length of the diurnal tidal current ellipses, which improves the model reproduction on the damping of diurnal CTWs. The model also suggests that the spin-down effects due to friction associated with the sea-ice cover play an important role in the tidal current reduction in the region where diurnal CTWs exist, as the observations suggested.  相似文献   

12.
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m–1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1–2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.  相似文献   

13.
海潮对海南观测井水位记录的影响   总被引:1,自引:1,他引:0  
掌握低纬度沿海地区海潮、理论固体潮、观测井水位观测曲线的日变特征及表现形式,使用快速傅里叶变换分离各谐波,提取优势频率,分析海潮对海南地区观测井水位观测数据的影响,发现距海岸线较近的向荣村井受海潮影响较大,水位观测曲线与海潮均表现为单峰单谷的日变特征。  相似文献   

14.
掌握低纬度沿海地区海潮、理论固体潮、观测井水位观测曲线的日变特征及表现形式,使用快速傅里叶变换分离各谐波,提取优势频率,分析海潮对海南地区观测井水位观测数据的影响,发现距海岸线较近的向荣村井受海潮影响较大,水位观测曲线与海潮均表现为单峰单谷的日变特征。  相似文献   

15.
Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI) and Wind Imaging Interferometer (WINDII) wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS). There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40° S and 40°N.  相似文献   

16.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

17.
Abstract

Results are presented of calculations on the generation of residual vorticity by tidal currents over the bottom topography of the Southern Bight of the North Sea. A typical order of magnitude is 10?6 to 10?7 s ?1. This is compared with current measurements on calm days, when similar magnitudes are found. At windspeeds less than about 5 m/s tidal generation of residual vorticity is important; at higher windspeeds wind effects begin to dominate. Our results are relevant in understanding the spatial variability of residual currents, because a non-zero vorticity implies the existence of horizontal gradients in the residual current field.  相似文献   

18.
A one month field campaign featuring two spring–neap tide cycles and three strong storms has been performed in a mobile dune area located in the central part of the Dover Strait. These dunes are known to move in a complex manner as their migration direction varies in space and time (Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004). In order to gain some insights into the dune motion processes we present an analysis of the spatio-temporal variability of currents in the area emphasizing the relative influence of tides and storms. A total of eight different hydro-meteorological regimes have been distinguished during the experiment duration. The analysis of the currents measurements at five locations in the area shows that the eight hydro-meteorological regimes induce very different current responses at the bottom. The residual tidal currents exhibit a significant spatial variability both in direction and in intensity. A numerical model of tidal currents over the Dover Strait confirms the strong spatio-temporal variability of the residual tidal currents featuring three singular points. Amongst them, a saddle point is located just south of the I-dune at the convergence of opposite direction residual tidal currents. The wind-induced currents are almost uniform in space, their intensity and direction however strongly depends on the wind regime and thus on time. The mean total current feature a spatial pattern which can be tidal of wind-induced currents dominated, or either in balance, depending on the regime considered. At the PERMOD campaign time scale, the total current is dominated by the residual tidal current. These results proved to give valuable insights to explain the complex dynamics of dune motion observed in this area by Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004 at short and long time scales.  相似文献   

19.
平流层爆发性增温(SSW)期间,低层大气温度场和风场等的剧烈变化会直接影响潮汐和风剪切作用.此举可能会导致电离层Es的相应变化.本文以2009年1月事件为例,分析了SSW期间Es层的响应.首先,在排除太阳活动和地磁活动对Es层影响的前提下,分析了昆明站附近MLT区域行星波和潮汐波的波动特性,发现此期间存在显著的2日行星波,并伴有日潮汐减弱和半日潮汐增强等波动现象;随后,分析相应时间段内Es层的变化特性发现,重庆和昆明站附近Es层强度明显减弱,且其高度显著抬升.这一现象与低层大气的波动变化具有同步性.最后,通过模拟经典风剪切理论下Es层金属离子的汇聚过程和运动轨迹,再现了SSW期间Es层与低层大气波动的耦合演化过程.该分析结果为研究低层-中层-高层大气的耦合过程提供了一种新的思路.  相似文献   

20.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号