共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Jakob Wallinga † Torbjörn E. Törnqvist‡ Freek S. Busschers§¶ Henk J. T. Weerts¶ 《Basin Research》2004,16(4):535-547
The Rhine–Meuse system in the west‐central Netherlands is a continental‐scale fluvial system bordered by an extremely wide continental shelf. Consequently, late Quaternary eustatic sea‐level changes have resulted in dramatic shoreline displacements, by as much as 800 km. In addition, changes in climate have been severe, given the latitudinal and palaeogeographic setting of the Rhine–Meuse system. We investigated the relative importance of these allogenic controls on fluvial aggradation and incision during the last two glacial–interglacial cycles. We used optical dating of quartz from ~30 samples in a cross‐section perpendicular to the palaeoflow direction, allowing us to correlate periods of aggradation and incision with independent records of sea‐level change, climate change and glacio‐isostatic crustal movements. We found the long‐term aggradation rate to be ~8 cm kyr?1, a value similar to previous estimates of tectonic subsidence rates in the study area. Several excursions from this long‐term aggradation trend could be identified for the last glacial–interglacial cycle. Dry climatic conditions with relatively high sediment supply induced aggradation during oxygen‐isotope stages (OIS) 4 and 3. Build‐up of a glacio‐isostatic forebulge during OIS 2 is a likely cause of incision around the Last Glacial Maximum, followed by an aggradation phase during forebulge collapse. Sea‐level highstands during OIS 5 have likely resulted in the aggradation of coastal prisms, but only minor, basal estuarine deposits have been preserved because these coastal prisms were prone to erosion during ensuing sea‐level falls. Overall, the sedimentary record is dominated by strata formed during time intervals when the study area was completely unaffected by sea‐level control, and our evidence shows that the falling‐stage systems tract has the highest preservation potential. Our study highlights the importance of considering the complex interplay of both upstream and downstream controls to obtain a comprehensive understanding of the evolution of basin‐margin successions. 相似文献
3.
Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010 总被引:1,自引:0,他引:1
To understand the variations in vegetation and their correlation with climate factors in the upper catchments of the Yellow River, China, Normalized Difference Vegetation Index(NDVI) time series data from 2000 to 2010 were collected based on the MOD13Q1 product. The coefficient of variation, Theil–Sen median trend analysis and the Mann–Kendall test were combined to investigate the volatility characteristic and trend characteristic of the vegetation. Climate data sets were then used to analyze the correlation between variations in vegetation and climate change. In terms of the temporal variations, the vegetation in this study area improved slightly from 2000 to 2010, although the volatility characteristic was larger in 2000–2005 than in 2006–2010. In terms of the spatial variation, vegetation which is relatively stable and has a significantly increasing trend accounts for the largest part of the study area. Its spatial distribution is highly correlated with altitude, which ranges from about 2000 to 3000 m in this area. Highly fluctuating vegetation and vegetation which showed a significantly decreasing trend were mostly distributed around the reservoirs and in the reaches of the river with hydropower developments. Vegetation with a relatively stable and significantly decreasing trend and vegetation with a highly fluctuating and significantly increasing trend are widely dispersed. With respect to the response of vegetation to climate change, about 20–30% of the vegetation has a significant correlation with climatic factors and the correlations in most areas are positive: regions with precipitation as the key influencing factor account for more than 10% of the area; regions with temperature as the key influencing factor account for less than 10% of the area; and regions with precipitation and temperature as the key influencing factors together account for about 5% of the total area. More than 70% of the vegetation has an insignificant correlation with climatic factors. 相似文献
4.
亚洲热带山地垂直植被带对晚第四纪气候变化的响应 总被引:3,自引:2,他引:3
过去一直认为热带低海拔地区晚更新世冰期的地表气温基本维持不变。孢粉分析、树线等研究结果证明,从南半球的新几内亚和赤道附近的苏门达腊,一直到我国的热带山地在末次盛冰期垂直植被带下降了500m~1600m不等。植被带的下降不仅仅与温度变化有关,其他的综合因素如高海拔紫外线辐射、大气CO2浓度等都可能共同影响垂直植被带的分布。综合研究认为,整个亚洲地区年均温度平均下降约4℃的结果与热带非洲和美洲基本一致,并与近两年来热带海洋表层水温的研究结果和近期的气候模拟结果相吻合。 相似文献
5.
温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI)是一种反映干旱状况的重 要方法。以内蒙古自治区锡林郭勒为研究区,基于温度植被干旱指数,采用趋势分析、R/S 分析方 法,探究了锡林郭勒地区 2000—2018 年温度植被干旱指数 TVDI 时空变化特征及其降水、气温气候 因子对 TVDI 变化的影响关系。研究表明:(1)19 a 间,TVDI 的偏差值呈现先减少后增大的趋势, 19 a 平均 TVDI 值为 0.55,TVDI 值范围为 0.51 ~ 0.61,说明锡林郭勒地区整体处于轻旱状态。(2)19
a 间,锡林郭勒地区 TVDI 呈明显增加的面积占 9.48%、轻度增加的面积占 18.52%,增加的趋势主要
分布在东乌珠穆沁旗东北部地区;TVDI 呈明显减少的面积占 28.65%、轻度减少的面积占 9.03%,减
少趋势的主要体现苏尼特右旗、苏尼特左旗、阿巴嘎旗和镶黄旗地区。19 a 来锡林郭勒地区变化趋
势为:东部强于西部。Hurst 指数的平均值为 0.44,大于 0.44 的地区占总面积的 47.7%,整体干旱持
续性略弱于反持续性。(3)TVDI 与年平均气温相关关系较弱,而与月平均气温又较强的相关性。 相似文献
6.
The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area.This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating.In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations.Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the mountain sector of the basins and in-channel gravel extraction (now illegal but very intense in the 1960s and 1970s) are causing erosion along the rivers and along large sectors of the Adriatic coast. These changes are comparable with those occurring in basins of other Mediterranean rivers. 相似文献
7.
Facies analysis across the carbonate platform developed during the Callovian–Oxfordian in the northern Iberian basin (Jurassic, Northeast Spain) is used to characterize successive stages of sedimentary evolution, including palaeoenvironmental reconstructions showing the distribution of a wide spectrum of facies, from ferruginous oolitic, peloidal, spongiolithic to intraclastic. The studied successions consist of two long‐term transgressive–regressive cycles bounded by a major unconformity with a major gap, comprising at least the upper Lamberti (Callovian) and Mariae (Oxfordian) Zones. Major transgressive peaks of these two cycles occurred at the end of the Early Callovian (late Gracilis Zone) and at the end of the Middle Oxfordian. The Callovian and Oxfordian successions were further divided into three and seven higher frequency cycles, respectively. The modelling of two sections (i.e. Ricla and Tosos) located 40 km apart in the more subsident open platform areas, allows the reconstruction of two curves showing a similar evolution of long‐term sea‐level changes that are in theory eustatic, though subject to uncertainties derived form the assumptions required for their construction. The changes affecting the northern Iberian basin seem to reflect nearly homogeneous subsidence (rates around 2 cm kyr?1) combined with possible eustatic changes including an Early Callovian rise, a fall at the middle Callovian–earliest Oxfordian (i.e. the Anceps–Mariae Zones), with average long‐term rates around 2 cm kyr?1 (total fall of 40–60 m), a period of lowstand at the Early–Middle Oxfordian transition and a long‐term rise at the Middle–Late Oxfordian transition (Transversarium and Bifurcatus Zones). Facies distribution across the Iberian platform indicates a progressive Middle–Late Callovian relative sea‐level fall rather than a rapid relative sea‐level fall at the end of the Callovian. After this falling episode, the progressive onlap over the swell areas during the Early Oxfordian and at the beginning of the Middle Oxfordian indicates a period of accommodation gain, which is explained by the combined effects of continuous subsidence across the platform and reduced sedimentation rates in spite of the possible eustatic lowstand. Eustatic lowstand, combined with other factors (ocean water circulation, volcanism) could help to explain the loss of carbonate production during the latest Callovian–Early Oxfordian, previous to the widespread eustatic rise and warning recorded at the onset of the Transversarium Zone (Middle Oxfordian). 相似文献
8.
Alan F. Arbogast Juleigh R. Bookout Bradley R. Schrotenboer Amy Lansdale Ginny L. Rust Victorino A. Bato 《Geomorphology》2008,102(3-4):615-623
This study focuses on the upper part of the Muskegon River system in north-central Lower Michigan and is the first to reconstruct the post-glacial history of fluvial landform development in the core of North America's Great Lakes region. Results indicate that the upper Muskegon River valley contains four alluvial terraces and numerous paleomeanders. Radiocarbon dating of peats within these old channels provides a good chronology for stream behavior and landform development. The T-4 terrace is a paired Pleistocene outwash/lacustrine surface that probably formed about 12,500 years ago. The T-3 terrace is a fill-strath surface that was cut between about 12,000 and perhaps 9500 years ago. The geometry of macromeanders on this surface suggests that stream discharge was 8 times greater than during the Holocene.The Pleistocene/Holocene transition is marked by a major period of downcutting that likely began as the climate warmed/dried and sediment yield diminished. This period of downcutting potentially lasted through the drier middle Holocene, creating a 6-m-high escarpment in the valley. The Muskegon River then began to aggrade when the climate became wetter. Subsequently the river again incised, creating the paired T-2 terrace, about 3400 years ago when the climate became still wetter. T-2 paleomeanders indicate that stream discharge at this time was consistent with the modern river. In the past 2500 years, the stream has constructed a poorly defined complex of T-1 terraces. These surfaces likely formed due to complex response associated with more variable climate. This study demonstrates that the upper Muskegon River has a similar post-glacial history as streams on deglacial and periglacial landscapes elsewhere in the world. 相似文献
9.
10.
Zsfia Ruszkiczay-Rüdiger Lszl Fodor Erzsbet Horvth Tams Telbisz 《Geomorphology》2009,104(3-4):203-217
The Gödöllő Hills, a low-relief terrain within the Central Pannonian Basin in Hungary, is characterised by moderate tectonic deformation rates. Although typical tectonic landforms are not clearly recognisable in the study area, this paper succeeded in discriminating between tectonically controlled landforms and features shaped by fluvial erosion or deflation with no tectonic control.DEM-based morphometric parameters including elevation, slope and surface roughness, enabled the delineation of two NW–SE trending spearhead-shaped ridges separated by a wide rectilinear valley of the same strike. Although directional statistics suggested possible tectonic control of NW–SE striking landforms, precise morphometry completed with an analysis of subsurface structures rejected their tectonic preformation. Deflation plays a significant role in shaping the area, and the presence of two large-scale yardangs separated by a wind channel is proposed. In temperate-continental areas of Europe, no deflational landforms of such scale have been described so far, suggesting that Pleistocene wind power in periglacial areas was more significant than it was previously thought.Characteristic drainage patterns and longitudinal valley profiles enabled the recognition of areas probably affected by neotectonic deformation. A good agreement was observed between locations of Quaternary warping predicted by the morphometric study and subsurface structures revealed by the tectonic analysis. Zones of surface uplift and subsidence corresponded to anticlinal and synclinal hinges of fault-related folds. In low-relief and slowly-deforming areas, where exogenous forces may override tectonic deformation, only the integrated application of morphometric and subsurface-structural indications could assure correct interpretation of the origin of various landforms, while a morphometric study alone could have led to misinterpretation of some morphometric indices apparently suggesting tectonic preformation. On the other hand, the described morphological expression of subsurface structures could verify Quaternary age of the deformation. 相似文献
11.
江河源区NDVI时空变化及其与气候因子的关系(英文) 总被引:2,自引:3,他引:2
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer. 相似文献
12.
Soil erosion assessment and prediction play critical roles in addressing problems associated with erosion control or soil
conservation. The past dynamics of soil erosion can provide valuable information for us to understand the relations of soil
erosion to environmental change and anthropogenic activity. The present paper has compared Holocene climatic changes in northwestern
China with those in southern Norway, and investigated the past dynamics of erosion activity during the Holocene. Modern soil
erosion on the Loess Plateau is a combination of the intensive natural erosion and human-induced erosion, the latter being
four times greater than the former. Because of global warming and increasing human activities, climate on the Loess Plateau
is becoming dryer and more unstable, causing an enhanced erosion problem and water scarcity. In the arctic-alpine region of
southern Norway, however, the global warming and regional wetting caused expansion of the largest European ice cap. This has
accentuated the erosion in that region, with a higher frequency of avalanches and debris flows. 相似文献
13.
Soil erosion assessment and prediction play critical roles in addressing problems associated with erosion control or soil conservation. The past dynamics of soil erosion can provide valuable information for us to understand the relations of soil erosion to environmental change and anthropogenic activity. The present paper has compared Holocene climatic changes in northwestern China with those in southern Norway, and investigated the past dynamics of erosion activity during the Holocene. Modern soil erosion on the Loess Plateau is a combination of the intensive natural erosion and human-induced erosion, the latter being four times greater than the former. Because of global warming and increasing human activities, climate on the Loess Plateau is becoming dryer and more unstable, causing an enhanced erosion problem and water scarcity. In the arctic-alpine region of southern Norway, however, the global warming and regional wetting caused expansion of the largest European ice cap. This has accentuated the erosion in that region, with a higher frequency of avalanches and debris flows. 相似文献
14.
Reader Lake and Elbow Lake, two high-altitude lakes in the Uinta Mountains of Utah, are located approximately 2 km apart,
at similar elevations, and within identical vegetation communities. Loss on ignition, carbon to nitrogen ratios, biogenic
silica, and sediment grain size were analyzed throughout percussion cores retrieved from both lakes to construct continuous
time series spanning 14 to ca. 2 ka BP. Given the proximity of the lakes, it is assumed that both were subjected to the same
climatic forcing over this time. Accordingly, the first goal of this study was to consider these two multiproxy datasets in
concert to yield an integrated paleoclimate record for this region. Close inspection of the records identified discrepancies
indicating that the lakes responded to climate changes in different ways despite their proximity and similar setting. Clarifying
these differences and understanding why the two lakes behaved differently at certain times was the second goal of this study.
Overall, the paleoclimatic records document lake formation in the latest Pleistocene following glacier retreat. Buried glacier
ice at the location of Reader Lake may have persisted through the Younger Dryas. Both lakes became biologically productive
ca. 11.5 ka BP, and the first appearance of conifer needles indicates that trees had replaced alpine tundra in these watersheds
by 10.5 ka BP. The interval from 10 to 6 ka BP was marked by a dramatic increase in precipitation, perhaps related to enhanced
monsoonal circulation driven by the insolation maximum. The two lakes recorded this event in notably contrasting ways given
their differing hydrogeomorphic settings. Precipitation decreased from 6 to 4 ka BP, and low water levels and drought conditions
marked the interval from 4.0 to 2.7 ka BP. The integrated paleoclimate record developed from these cores provides a useful
point of comparison with other records from the region. The differences between the records from these closely spaced lakes
underscore the need to consider hydrogeomorphic setting when evaluating the suitability of a lake for a paleolimnological
study. 相似文献
15.
Sarah E. Metcalfe F. Alayne Street-Perrott R. Alan Perrott Douglas D. Harkness 《Journal of Paleolimnology》1991,5(3):197-218
The Upper Río Lerma valley, Estado de México, is a high-altitude (2575 m a.s.l.) basin floored by Quaternary alluvial, lacustrine and pyroclastic deposits. Two pits were dug in the swampy bed of the recently drained L. Chiconahuapan. Ten 14C dates have been obtained from these profiles, which consist of diatomaceous organic lake muds and peats with intercalated tephras. The oldest unit is the Upper Toluca Pumice (Tripartite Ash), dated 11 580±70 yr BP. Analyses of sediment chemistry, loss-onignition, mineral-magnetic variations and subfossil diatom assemblages provide evidence of environmental changes since this date. Alkaline ponds or freshwater lakes developed during the intervals 9000–6000, 6000–5500, 3600–1400 and 800–0 yr BP, and acidic marshes or bogs during the intervening dry episodes. An important phase of accelerated erosion, beginning around 3100 yr BP and culminating around 1400–700 yr BP, appears to have been associated with human disturbance of the basin soils. 相似文献
16.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water. 相似文献
17.
18.
Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission‐track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse‐fault‐bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission‐track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift‐shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion. 相似文献
19.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault. 相似文献
20.
Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley, the northeastern Tibetan Plateau, China 总被引:2,自引:0,他引:2
Gravel deposits on fluvial terraces contain a wealth of information about the paleofluvial system. In this study, flow direction and provenance were determined by systematic counts of more than 2000 clasts of imbricated gravel deposits in the Xining Region, northeastern Tibetan Plateau, China. These gravel deposits range in age from the modern Huangshui riverbed to Miocene-aged deposits overlain by eolian sediments. Our major objectives were not only to collect first-hand field data on the fluvial gravel sediments of the Xining Region, but also to the reconstruct the evolution of the fluvial system. These data may offer valuable information about uplift of the northeastern Tibetan Plateau during the late Cenozoic era. Reconstructed flow directions of the higher and lower gravel deposits imply that the river underwent a flow reversal of approximately 130–180°. In addition, the lithological compositions in the higher gravel deposits differ significantly from the lower terraces, suggesting that the source areas changed at the same time. Eolian stratigraphy overlying the gravel deposits and paleomagnetic age determination indicate that this change occurred sometime between 1.55 Ma and 1.2 Ma. We suggest that tectonic activity could explain the dramatic changes in flow direction and lithological composition during this time period. Therefore, this study provides a new scenario of fluvial response to tectonic uplift: a reversal of flow direction. In addition, field observation and statistical analyses reveal a strong relationship between rock type, size and roundness of clasts. 相似文献