首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
外来天体物质的高速撞击作用贯穿了月球形成和演化的全部历史。撞击作用是塑造月球全球地貌、改造月表物质的物理化学特征、影响月球多圈层演化的重要地质营力。月球上的撞击过程、撞击历史及其对月表物质的改造,一直是月球科学研究的重要内容,也是月球探测的重点研究对象。本文综述了近十年来国、内外在月球的撞击过程、撞击历史和撞击改造浅表层物质研究中的重要进展,重点介绍了基于我国嫦娥探月工程获取的科学数据的相关研究成果,展望了该研究的发展方向,并对未来探测的重要观测目标提出了建议。  相似文献   

2.
撞击坑统计技术在行星表面定年应用中的误区   总被引:1,自引:0,他引:1  
撞击坑大小-频率统计技术在其理论基础与实际应用中存在一定的局限性,且尚未引起国内外行星地质学界的广泛关注.使用该技术分析行星表面的年龄时,应注意:(1)由于晚期大轰击事件的存在,该技术不能用于估算内太阳系天体表面老于~38亿年的地质体的年龄;(2)由于内、外太阳系的撞击历史不同,不能直接使用月球上的撞击坑的产生方程估算外太阳系天体表面地质单元的绝对模式年龄;(3)由于二次撞击坑的干扰,须谨慎使用小撞击坑统计估算年龄;(4)分析撞击坑统计的结果前,首先需分析统计区的饱和状态;(5)避免使用太阳入射角小的影像数据统计撞击坑,避免选择地形复杂的区域作为统计区.另外,建议优先使用相对分布法、并结合累积分布法分析撞击坑统计的结果.  相似文献   

3.
撞击作用发生在太阳系形成和演化的所有阶段,是最基本的地质过程之一。陨石可以从微观尺度记录下这些重要的过程。在所有陨石族群中,L群普通球粒陨石保留了最完备的冲击变质记录,对撞击发生的时间、冲击过程中的物理条件提供了重要制约。矿物学证据表明,在太阳系形成100 Ma内,L群陨石母体可能发生一次撞击裂解事件,并在随后重组。4.48 Ga左右,原始小行星带经历大范围的撞击作用,这一事件也记录于L群普通球粒陨石中,可能是由月球大撞击事件溅射的大量碎屑进入到原始主小行星带引起。约800 Ma,包括L群陨石母体在内的内太阳系部分天体经历了同时期撞击事件,可能由这一时期裂解的大质量小行星产生的溅射物引发。L群陨石母体在~465 Ma发生撞击裂解,这一事件在L群陨石中保留了丰富的矿物学、年代学记录,并在地球全球奥陶纪地层发现相关信息。综合与该事件相关的所有L群陨石冲击变质特征,本文认为该裂解事件是由一颗大直径(18~22 km)石陨石质小行星,以较低速率(5~6 km/s)撞击导致。同位素年代学数据表明,L群普通球粒陨石母体很可能未受到晚期大撞击事件的影响,这难以用L群陨石母体过小予以解释。可能的原因有...  相似文献   

4.
徐璐媛 《地质学报》2021,95(9):2662-2677
充分认识外太阳系撞击体的来源类型和分布特征,对认识外太阳系固态天体上撞击过程,明确外太阳系天体上的撞击坑生成率和撞击坑定年等诸多方面具有重要的意义.得益于海量高质量探测数据的获取,如今我们对内太阳系主要天体表面的撞击分布和来源已经有了较为深入的了解,但对外太阳系天体的撞击分布和来源还知之甚少.不同大小频率的撞击体会在外...  相似文献   

5.
6.
国内外对天体撞击地球的撞击构造研究的新进展   总被引:11,自引:0,他引:11  
覃功炯  欧强  常旭 《地学前缘》2001,8(2):345-352
以 31届国际地质大会有关论文为基础 ,综述了国内外撞击构造研究的最新进展 ,分 4个方面 :(1)新的撞击坑发现与报道 :除已知的 145个之外 ,还有巴西的 14个撞击坑 ,其中 7个目前已经证实 ;蒙古的 2 0个撞击坑 ,其中 11个已经证实 ;中国自 2 0世纪 70年代以来发现和报道的 8个撞击坑和对它们的研究简况。 (2 )撞击构造与地球演化 :涉及到地球的起源 ,天体撞击在地球形成中的作用 ,撞击周期 ,撞击与地磁 ,地轴变动的关系 ,撞击作用与板块构造 ,撞击与地球内动力的关系 ,太阳系其他行星上的撞击作用对比。 (3)撞击构造研究方法 :包括对复杂撞击坑中心隆起的深钻研究成果 ,对海洋巨型撞击坑的地震测量 ,撞击熔岩的分异与蚀变的物理化学实验计算 ,深部流体与撞击作用的研究进展 ,撞击压力测量的新方法 ,撞击变质作用在矿物学上的进展 ,撞击数学模型的建立与应用。 (4 )撞击构造与经济矿产 :包括金刚石 ,宝玉石 ,Au ,Ag ,Cu ,Ni,Co ,Se ,Te ,Pb ,Zn ,PGE ,REE ,U ,Th等多种元素与矿产以及石油、煤、天然气与撞击构造的关系 ,这些矿产在成因、分布规律、控制作用与撞击构造的关系。  相似文献   

7.
撞击坑统计方法是估计行星表面年代的一种有效方法。利用小尺度撞击坑大小频率分布测定撞击年龄,并分析了计算模型的不确定性、撞击坑的退化、次级撞击坑影响等相关问题。选用嫦娥二号获取的虹湾地区高精度影像数据进行验证,确定该区域退化参数为350 m,直径小于30 m时次级撞击坑密集分布,使用350 m以上的撞击坑计算得到撞击年龄为3.16 Ga,误差控制在0.1 Ga以内。  相似文献   

8.
撞击坑统计定年法及对月球虹湾地区的定年结果   总被引:2,自引:0,他引:2       下载免费PDF全文
赵健楠  黄俊  肖龙  乔乐  王江  胡斯宇 《地球科学》2013,38(2):351-361
撞击作用是行星形成和表面重塑的重要地质过程,记录和揭示了行星的演化历史.撞击作用形成的撞击坑可用于研究天体表面地质单元形成的时间.依据内太阳系天体表面的撞击历史,总结了通过对撞击坑的直径和频率分布进行统计,计算天体表面模式年龄的原理和方法.在此基础上,利用美国“月球勘测轨道器(LRO)”广角相机获得的图像,对月球虹湾地区的撞击坑进行了直径-频率分布统计研究,获得其3个主要地质单元的绝对模式年龄分别为3.33 Ga、3.21 Ga和2.60 Ga,有效限定了本区主要地质事件发生的时间.   相似文献   

9.
本文从地球演化早期巨陨撞击构造对大地构造的影响。撞击建造、撞击成矿作用等方面论述了撞击构造的地质作用特征,并通过实例加以说明。  相似文献   

10.
李文渊 《西北地质》2008,41(4):148-151
2008年8月6~14日在挪威奥斯陆召开的第33届国际地质大会上,比较行星学与撞击构造是相比过去国际地质大会发展较为迅猛的领域,受到了更多国家的关注,研讨的深度和广度也有非常大的变化。笔者未参加2004年在意大利召开的第32届国际地质大会,所以无从比较其具体变化,仅从会议报告内容而言,均是近年来的新发现和新认知。比较行星学与撞击构造领域共分五个专题讨论会,分别是:比较行星学进展、火星和金星的地质学、从气体和尘埃到星球、月球的起源和演化以及撞击构造等。  相似文献   

11.
The Australian continent has one of the best-preserved impact-cratering records on Earth, closely rivalling that of North America and parts of northern Europe, and the rate of new discoveries remains high. In this review 26 impact sites are described, including five small meteorite craters or crater fields associated with actual meteorite fragments (Boxhole, Dalgaranga, Henbury, Veevers, Wolfe Creek) and 21 variably eroded or buried impact structures (Acraman, Amelia Creek, Connolly Basin, Foelsche, Glikson, Goat Paddock, Gosses Bluff, Goyder, Kelly West, Lawn Hill, Liverpool, Matt Wilson, Mt Toondina, Piccaninny, Shoemaker, Spider, Strangways, Tookoonooka, Woodleigh, Yallalie, Yarrabubba). In addition a number of possible impact structures have been proposed and a short list of 22 is detailed herein. The Australian cratering record is anomalously biased towards old structures, and includes the Earth's best record of Proterozoic impact sites. This is likely to be a direct result of aspects of the continent's unique geological evolution. The Australian impact record also includes distal ejecta in the form of two tektite strewn fields (Australasian strewn field, ‘high-soda’ tektites), a single report of 12.1?–?4.6 Ma microtektites, ejecta from the ca 580 Ma Acraman impact structure, and a number of Archaean to Early Palaeoproterozoic impact spherule layers. Possible impact related layers near the Eocene?–?Oligocene and the Permian?–?Triassic boundaries have been described in the literature, but remain unconfirmed. The global K?–?T boundary impact horizon has not been recognised onshore in Australia but is present in nearby deep-sea cores.  相似文献   

12.
Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance in terrestrial — indeed, in planetary — evolution. About 170 impact structures have been discovered on Earth so far, and some more structures are considered to be of possible impact origin. One major extinction event, at the Cretaceous-Paleogene boundary, has been firmly linked with catastrophic impact, but whether other important extinction events in Earth history, including the so-called “Mother of All Mass Extinctions” at the Permian-Triassic boundary, were triggered by huge impact catastrophes is still hotly debated and a subject of ongoing research. There is a beneficial side to impact events as well, as some impact structures worldwide have been shown to contain significant (in some cases, world class) ore deposits, including the gold-uranium province of the Witwatersrand basin in South Africa, the enormous Ni and PGE deposits of the Sudbury structure in Canada, as well as important hydrocarbon resources, especially in North America. Impact cratering is not a process of the past, and it is mandatory to improve knowledge of the past-impact record on Earth to better constrain the probability of such events in the future. In addition, further improvement of our understanding of the physico-chemical and geological processes fundamental to the impact cratering process is required for reliable numerical modeling of the process, and also for the correlation of impact magnitude and environmental effects. Over the last few decades, impact cratering has steadily grown into an integrated discipline comprising most disciplines of the geosciences as well as planetary science, which has created positive spin-offs including the study of paleo-environments and paleo-climatology, or the important issue of life in extreme environments. And yet, in many parts of the world, the impact process is not yet part of the geoscience curriculum, and for this reason, it deserves to be actively promoted not only as a geoscientific discipline in its own right, but also as an important life-science discipline.  相似文献   

13.
太湖冲击成因说由来已久,但始终未成定论。近几年在太湖及周边湖泊的淤泥层中发现了许多形态各异的奇石,经多种方法测试研究,确定为太湖冲击坑的溅射物。根据成份,溅射物分为两大类。一类富铁质,以菱铁矿及其胶结的碎屑为主,包括微小球粒、棍状及各种形态的块状和片状体 ;另一类贫铁质,以方解石及其胶结的长英质碎屑为主,碎屑为锐角状的石英晶屑及少量粘土和长英质岩屑。溅射物的大小从厘米级块体到毫米级球粒,再至微米级尘粉都有。溅射物外形多具有旋转扭曲形态及熔壳特征,显示了熔融、塑性- 半塑性特征。这些特征显示其成因经历了冲击震碎、熔融、挖掘抛射、空中飞行,最后溅落在冲击坑及其周围。溅射物的成分反映了太湖靶岩基岩岩性特征。太湖冲击坑溅射物的发现是继太湖诸岛石英砂岩中石英晶体的冲击变质微结构发现之后,又一重大突破。综合其它特征,可以确定太湖为一冲击坑。  相似文献   

14.
张诚  陈建平 《江苏地质》2019,43(3):514-522
撞击坑是研究月球最直接的对象,也是月球表面最为普遍且显著的地貌单元和地质构造标志,在行星地质学研究中具有重要的地位。通过对月球撞击坑识别方法和撞击坑分类方法研究进展进行概述及总结,将月球撞击坑识别方法概括为人工识别、基于形态特征提取算法、基于机器学习算法、基于地理信息融合分析算法4类,并对月球撞击坑识别方法研究中存在的问题进行了分析。  相似文献   

15.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

16.
Remote sensing and GIS techniques play a substantial role for the identification of possible terrestrial impact structures, for mapping target-rock lithologies and deciphering the structural style of known craters. In this case study the lithological and structural characteristics of the highly eroded Proterozoic Strangways impact crater in the Northern Territory have been analysed on the basis of Landsat Enhanced Thematic Mapper satellite imagery, topographical data and airborne geophysical data. Regarding Landsat data, the calculation of basic statistical parameters and the optimum index factor has been found useful for a pre-selection of informative band combinations. By means of the analysis of multisensoral data, the distribution of crystalline basement rocks, siliciclastic target rocks of the Roper Group as well as post-impact deposits and deeper seated Proterozoic dykes can be detected. The original crater dimensions of the Strangways structure are carefully estimated at 26?–?29 km by combining the remote sensing data with the distribution of shatter cones localised in the field. The remote sensing/GIS approach of a geological interpretation based on multisensoral sources and combined fieldwork data can be successfully applied to other impact structures on earth, as well.  相似文献   

17.
Two general classes of lunar impact breccias have been recognised: fragmental breccias and melt breccias. Fragmental breccias are composed of clastic-rock debris in a finely comminuted grain-supported matrix of mineral and lithic fragments. Impact melt breccias have crystalline to glassy matrices that formed by cooling of a silicate melt. Most lunar impact breccias in our collection probably sample ejecta from large complex craters or multi-ring basins, although linking individual breccias to specific impact events has proven surprisingly difficult. A long-standing problem in lunar science has been distinguishing clast-poor impact melt breccias from igneous rocks produced by melting of the lunar interior. Concentrations and relative abundances of highly siderophile elements derived from the meteoritic impactor provide a useful discriminant, especially when combined with petrologic and geochemical evidence for mechanical mixing. Most lunar impact melt breccias have crystallisation ages of 4.0?–?3.8 Ga, corresponding to an episode of intensive crustal metamorphism recorded by whole-rock U?–?Pb isotopic compositions of lunar anorthosites. This may reflect a short-lived spike in the cratering rate, although other explanations are possible. The question of whether or not a cataclysmic bombardment struck the Earth and Moon at ca 3.9 Ga remains open and the subject of continuing investigations.  相似文献   

18.
Using orbital imaging radar, we detected a double circular structure, located in the southeastern part of the Libyan Desert, which is partially hidden under sandy sediments. Fieldwork confirmed it to be an unknown double impact crater, each crater having a diameter of about 10 km, younger than 140 Ma. Sampling on the site enabled the observation of quantities of shatter cone structures and impact breccias containing planar fractures. To cite this article: P. Paillou et al., C. R. Geoscience 335 (2003).  相似文献   

19.
The unique combination of its large size (250-300 km diameter), deep levels of erosion (>7 km), and widespread regional mining activity make the Vredefort impact structure in South Africa an exceptional laboratory for the study of impact-related deformation phenomena in the rocks beneath giant, complex impact craters. Two types of impact-generated melt rock occur in the Vredefort Structure: the Vredefort Granophyre - impact melt rock - and pseudotachylitic breccias. Along the margins of the structure, mining and exploration drilling in the Witwatersrand goldfields has revealed widespread fault-related pseudotachylitic breccias linked to the impact event. There, volumetrically limited melt breccia occurs in close association with cataclasite or mylonitic zones associated with bedding-parallel normal dip-slip faults that formed during inward slumping of the crater walls, and in rare subvertical faults oriented radially to the center of the structure. This association is consistent with formation of pseudotachylites by frictional melting. On the other hand, rocks in the Vredefort Dome - the central uplift of the impact structure - contain ubiquitous melt breccias that range in size from sub-millimeter pods and veinlets to dikes up to tens of meters wide and hundreds of meters long. Like fault-related pseudotachylites in the goldfields and elsewhere in the world, they display a close geochemical relationship to their wallrocks, indicating local derivation. However, although mm/cm- to, rarely, dm-scale offsets are commonly found along their margins, they do not appear to be associated with broader fault zones, are commonly considerably more voluminous than most known fault-related pseudotachylites, and show no consistent relationship between melt volumes and slip magnitude. Recent petrographic observations indicate that at least some of these melt breccias formed by shock melting, with or without frictional melting. Consequently, the non-genetic term “pseudotachylitic breccia” has been adopted for these Vredefort occurrences. These breccias formed during the impact in rocks at temperatures ranging from greenschist to granulite facies, and were subsequently annealed to varying degrees during cooling of the central uplift.In addition to the pseudotachylitic breccias, nine clast-laden impact melt dikes (Vredefort Granophyre), each up to several kilometers long, occur in vertical radial and tangential fractures in the Vredefort Dome. Unlike the pseudotachylitic breccias, they display a remarkably uniform bulk composition and clast populations that are largerly independent of their wallrocks, and they contain geochemical traces of the impactor. They represent intrusive offshoots of the homogenized impact melt body that originally lay within the crater. U-Pb single zircon and Ar-Ar dating indicates that the Vredefort Granophyre and pseudotachylitic breccias, and the Witwatersrand pseudotachylites all formed at 2020±5 Ma - the age of the impact event, making the breccias a convenient time marker in the evolution of the structurally complex Witwatersrand basin with its unique gold deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号