首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tapered piles represent a more equitable distribution of the pile material in several respects. In order to study their efficiency over piles of uniform section with the same material input, a three-dimensional finite element analysis is developed. The numerical procedure accounts for the non-linear elastic behaviour of both the soil and the pile-soil interface. In order to include the latter, which involves relative slip and debonding, zero/non-zero thickness interface elements are used. Three shapes of cross-section, viz. circular, square and triangular, have been attempted for the piles. The load-settlement behaviour under axial load predicted by the analysis is compared with laboratory test results obtained on instrumented model piles, installed as ‘replacement’ piles, and the fit obtained is found to be reasonably good. Also examined are interface shear and axial force in the pile, displacement and stress fields in the medium and the progression of failure in the latter.  相似文献   

2.
范静海  栾茂田  黎勇  叶祥记 《岩土力学》2004,25(Z2):154-159
针对多体相互作用体系的非连续变形分析问题和接触问题,采用Mohr-Coulomb屈服准则和关联流动法则以及接触界面上的非线性应力分布模式,考虑接触界面特性提出了非线性接触力元模型,以结点位移和界面相互接触应力同时作为独立未知变量,建立了离散系统的总体控制方程.进而,通过数值求解能够直接确定变形体内的应力与变形、界面上的接触应力与离散体的位移与运动.将这种以接触力元为基础的多体系统分析方法具体应用于基础与地基相互作用分析,通过数值计算与分析探讨了地基与基础的相对刚度、荷载大小及其偏心距、地基与基础间界面力学参数对接触界面的应力分布和地基变形的影响,所得结果为工程中考虑基础与地基相互作用影响的设计与分析提供了参考依据.  相似文献   

3.
对桩及承台采用线弹性有限元模型,对承台下桩周土采用弹塑性有限元模型,对群桩以外的土体采用线弹性无限元模型,在桩土接触面上设置接触面单元,利用三维弹塑性有限元对桩%D土%D承台相互作用进行了分析。得出了如下结论 :承台下桩顶反力总体表现出角桩最大,边桩次之,中桩最小的分布规律,随着作用在承台上的荷载增大,桩顶反力趋于均匀分布,承台下桩侧摩阻力是由桩端向桩顶逐渐发展的,承台对桩上部侧摩擦阻力存在削弱作用。为了验证本文方法的可行性,对承台下有九桩的情况进行了静载试验,将试验结果与本文计算结果进行了比较。  相似文献   

4.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

5.
费康  朱志慧  石雨恒  周莹 《岩土力学》2020,41(12):3889-3898
采用双曲线模型模拟桩土界面上的力学行为,利用剪切位移法反映剪应力在土层中的传递,考虑群桩之间的相互作用,建立了热?力耦合作用下能量桩群桩基础工作特性的简化分析方法。该方法能反映桩土界面上的非线性、桩顶的约束条件和能量桩位置的影响,可直接计算所有桩的位移和轴力。与现有方法相比,计算得到的双桩相互作用因子更加合理。通过与文献中试验数据的对比表明,若只有局部桩经历温度变化,能量桩运行过程中各桩之间存在差异变形,基础出现倾斜,桩顶荷载发生重分布。所建立方法计算方便,能合理模拟能量桩群桩基础的主要工作特性,可用于大规模能量桩群桩基础的设计计算。  相似文献   

6.
The authors' previous application of non-linear analysis of the behavior of rigid piles is extended to the elastic and plastic behavior of flexible piles under lateral load. Using Broyden's approach of solving non-linear simultaneous equations and the conventional p-y concept, a new numerical method of non-linear analysis is developed. Comparisons of the results computed by present method with the results of previous similar methods are presented to show the efficiency and usefulness of the present method. For flexible piles a study of the relationship between effective depth De and relative pile stiffness Kr for both elastic and plastic ranges is carried out. Thus the analytical basis for the method using previous results of the bearing capacity and displacements of laterally loaded rigid piles to predict those of flexible piles is provided.  相似文献   

7.
土与结构间接触面的非线性弹性-理想塑性模型及其应用   总被引:19,自引:3,他引:16  
栾茂田  武亚军 《岩土力学》2004,25(4):507-513
将非线性弹性理论与弹塑性理论相结合,对于土与结构间接触面提出了一种非线性弹性-理想塑性模型,用于模拟土与结构相互作用体系的变形与破坏机理。推导建立了这种接触面单元的应力-应变关系和弹塑性系数矩阵,并且讨论了这种模型在基坑开挖与支护分析应用中所面临的数值计算问题。最后针对某一基坑工程实例,应用这种接触面模型进行了数值计算与分析,结果表明,该模型能够较合理地模拟接触面上的变形机理与受力状态。  相似文献   

8.
In this paper, a numerical procedure based on the finite element method is outlined to investigate pile behaviour in sloping ground, which involves two main steps. First a free-field ground response analysis is carried out using an effective stress based stress path model to obtain the ground displacements, and the degraded soil stiffness and strength over the depth of the soil deposit. Next a dynamic analysis is carried out for the pile. The interaction coefficients and ultimate lateral pressure of soil at the pile–soil interface are calculated using degraded soil stiffness and strength due to build-up of pore pressures, and the soil in the far field is represented by the displacements calculated from the free-field ground response analysis. Pore pressure generation and liquefaction strength of the soil predicted by the stress path model used in the free-field ground response analysis are compared with a series of simple shear tests performed on loose sand with and without an initial static shear stress simulating sloping and level ground conditions, respectively. Also the numerical procedure utilised for the analysis of pile behaviour has been verified using centrifuge data, where soil liquefaction has been observed in laterally spreading sloping ground. It is demonstrated that the new method gives good estimate of pile behaviour, despite its relative simplicity.  相似文献   

9.
现行的桩基设计方法主要基于线弹性理论及采用半经验假定,难以准确地检验长桩在土体非线性条件下的稳定性。基于非线性有限单元分析理论,提出了高性能桩单元分析法用于非线性分析,可直接检验单桩稳定性且无需假定桩的计算长度系数。在桩单元推导过程中,通过整合在单元内部的连续弹簧以考虑土-结构相互作用(SSI),能够大幅提升计算效率。使用牛顿-拉夫逊迭代法进行迭代运算,利用推导的相应单元切线刚度矩阵预测位移,并通过割线关系减少每一步迭代中产生的误差,在桩的大变形条件下采用更新拉格朗日法确定平衡条件。算例验证表明,桩单元模型在考虑土体非线性条件下,能高效、可靠地对单桩进行分析和设计。  相似文献   

10.
Open-ended pipe piles are often used in offshore foundations. The response of the soil plug inside a pipe pile is poorly understood, and only limited work has been performed to quantify the response under the different loading conditions relevant to offshore platforms. This paper describes numerical analyses that have been carried out in order to assess the end-bearing capacity of the soil plug under loading conditions which range from undrained to fully drained. The soil plug has been modelled as either elastic, elastic–perfectly-plastic or elastoplastic. The soil–pile interface, an important aspect of the problem, has been examined critically. Comparison with experimental data from model test at laboratory scale indicates that the load–deformation behaviour of the soil plug is modelled well using an elastoplastic model for the soil plug, and an elastic–perfectly-plastic joint element to model the soil–pile interface. The finite element analyses show that, under typical loading conditions, adequate end bearing may be mobilized by the soil plug, largely by high effective stresses in the bottom 3–5 diameters of the soil plug.  相似文献   

11.
INTRODUCTIONCurrently, the contact element is a problematicpoint problem in the mechanics of rock and soil engi neering. In the tenth international conference onComputer Methods and Advances in Geomechanics,held in America in January, 2001, the …  相似文献   

12.
Analytical methods for the axial responses of piles can be classified under three broad categories of (1) simple but approximate analytical solutions, (2) one-dimensional numerical algorithms, (3) full axisymmetric analyses using boundary or finite element approaches. The first two categories rely on the so-called load transfer approach, with interaction between pile and soil determined by independent springs distributed along the pile shaft and at the pile base. The non-linear spring stiffness is related to the elastic–plastic properties of the actual soil partly by empirically based correlations and partly by theoretical arguments based on simplified models of the pile–soil system. This paper presents new closed-form solutions for the axial response of piles in elastic–plastic, non-homogeneous, media. The solutions fall in the first of the three categories above, and have been verified through extensive parametric studies using more rigorous one-dimensional and continuum analyses. The effect of non-homogeneity and partial slip on the load and displacement profiles along the pile shaft is explored, and comparisons are presented with experimental data. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
王成  邓安福  李晓红 《岩土力学》2004,25(Z2):296-300
利用三维有限元、无限元和界面单元相耦合的方法对短桩桩土共同作用全过程进行数值模拟,计算了短桩桩土体系中土体对桩身的抗力分布及桩前土体隆起位移和桩后土体与桩分离大小等,较详细地探讨了短桩桩土共同作用机理.  相似文献   

14.
一种确定导管架平台群桩p-y数据的方法   总被引:1,自引:0,他引:1  
导管架海洋平台群桩基础的桩头约束是一种弹性约束。针对具有弹性约束桩头的群桩,提出了一种利用非线性地基梁群桩模型,通过迭代计算确定导管架平台群桩p-y数据的方法。该方法首先依据单桩p-y曲线,利用具有弹性约束桩头的群桩模型,计算桩头在总荷载作用下的水平位移;再利用Poulos相互作用系数确定由于群桩相互作用引起的桩头附加水平位移,将总荷载作用下的桩头水平位移与桩头附加水平位移叠加后的结果作为迭代计算的初始桩头水平位移。然后,依据桩头荷载与初始桩头水平位移,通过对单桩p-y数据的标定,确定其修正系数Ym,进而得到与第1次计算对应的群桩p-y数据。在接下来的迭代计算中,利用每次更新后的Ym确定该次计算使用的群桩p-y数据,并据此由群桩计算模型计算桩头位移,通过对单桩p-y数据标定确定相应的Ym,直到第i次与第i-1次计算出的Ym(i)和Ym(i-1)之间相对误差小于允许误差为止。由于该方法考虑群桩效应的p-y数据,且借助具有弹性约束桩头的群桩模型进行分析,从而使计算结果能客观反映具有弹性约束桩头群桩之间的相互作用与变形特性。  相似文献   

15.
Three-dimensional (3D) numerical analyses have been carried out to study the behaviour of a single pile to adjacent tunnelling in the lateral direction of the pile. The numerical analyses have included comparisons between the current study, previous elastic solutions and advanced 3D elasto-plastic analyses. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the axial force distributions on the pile, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the pile settlement. In particular, the shear stress transfer mechanism along the pile related to tunnel advancement has been analysed by using interface elements allowing soil slip. It has been found that existing solutions may not accurately estimate the pile behaviour since several key issues are not included. Due to changes in the relative shear displacement between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops at the upper part of the pile, while upward shear stress is mobilised at the lower part of the pile, resulting in a compressive force on the pile. A maximum compressive force of about 0.25–0.52Pa was developed on the pile, solely due to tunnelling, depending on the pile tip locations relative to the tunnel position, where Pa is the service pile loading prior to tunnelling. The majority of the axial force on the pile developed within ±2D in the transverse direction (behind and ahead of piles) relative to the pile position, where D is the tunnel diameter. In addition, mobilisation of shear strength at the pile–soil interface was found to be a key factor governing pile–soil–tunnelling interaction. The reduction of apparent allowable pile capacity due to tunnelling was dependent on the pile location relative to the tunnel position. Some insights into the pile behaviour in tunnelling obtained from the numerical analyses will be reported and discussed.  相似文献   

16.
A subdomain approach for dynamic soil–structure interaction is proposed for the linear elastic seismic analysis of an anchored sheet pile, retaining a horizontally layered soil on rigid bedrock. A hybrid solution technique is used, employing a finite element formulation for the generalized sheet pile, a thin layer formulation for the soil and a direct stiffness formulation for the tieback; the displacement vectors of the sheet pile and the soil are decomposed, using the eigenmodes of the sheet pile and the propagating or decaying modes in the soil. The discretization can be limited to the interface(s), where pointwise continuity of the displacements is enforced, whereas a weak variational formulation is used for the stress equilibrium. The solution technique is illustrated by means of a numerical example, where the harmonic response of a flexible anchored sheet pile is considered and compared to the case where no tieback is present. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
苗雨  李威  郑俊杰  房慧明 《岩土力学》2015,36(11):3223-3228
在地震荷载作用过程中,由于桩身材料性能与周围土体性质差异较大,土体在桩-土接触面上发生张开或滑移,该强非线性接触行为直接影响接触面附近土体与桩体应力状态,从而影响上部结构地震响应水平。真实桩-土接触面由于桩身表面混凝土约束关系,具有一定厚度且存在相关体变规律的接触带。通过有限元软件ABAQUS用户自定义单元UEL程序编写改进Desai薄层接触单元,在Desai薄层接触单元中加入Rayleigh阻尼项以模拟地震作用时桩-土强非线性接触行为能量耗散过程。接触面法向与两切向本构关系采用双曲线模型。规定了Desai薄层接触单元在桩-土接触面上的行为模式以模拟土体在接触面黏结、滑动、张开、再闭合等接触状态。建立精细三维桩-土-结构体系动力相互作用模型以研究改进Desai单元对上部结构峰值动力响应水平影响,为工程结构抗震设计时程分析提供参考依据。  相似文献   

18.
This paper mainly investigates the influences of compressible parameters on the vertical vibration of a pile embedded in layered poroelastic soil media. The pile is treated as a 1D elastic bar by the finite element method, and fundamental solutions for the layered poroelastic soils due to a vertical dynamic load are obtained by the analytical layer element method. Based on the compatibility conditions, the pile-soil dynamic interaction problem is solved. The numerical scheme has been compiled into a Fortran program for numerical calculation. Influences of the pile-soil stiffness ratio, compressible parameters, vibration frequency and the soil stratification are discussed.  相似文献   

19.
注浆成型螺纹桩为一种利用施工工艺创新,结合钻孔灌注和二次注浆技术的新型螺纹抗拔桩型,目前已在软土地区开展应用。为了对其受力承载特性深入研究,使该桩型得到广泛推广,通过数值分析方法对其抗拔性能和承载机制进行了三维有限元数值模拟。首先,通过数值模拟桩-土界面室内大型直剪试验得到了有限元分析需要的桩-土接触面参数,而后将得到的参数带入注浆成型螺纹桩抗拔三维有限元数值模型,通过计算得到了不同距径比S/D(即螺距与桩径的比值)螺纹桩的抗拔荷载-位移曲线和轴力分布,并观察了抗拔过程中桩周土体塑性变形的发展。数值分析表明,螺纹桩与桩周土体的机械咬合作用增大了桩侧摩阻力,从而使桩体极限抗拔承载力较等截面圆桩提高约2~5倍;同时,其承载能力与桩体的S/D有关,当S/D取最优时,荷载-位移曲线的初始切向刚度最大,极限承载力最高,桩周土体形成的连续拱形破坏区域最大。  相似文献   

20.
A numerical procedure is presented for the downdrag analysis of group piles which penetrate a consolidating upper soil layer to socket into a firm bearing stratum of finite stiffness. The settlement of the consolidating upper soil layer under a surcharge load is estimated using Terzaghi's one-dimensional consolidation theory. Parametric solutions are presented to show the influence of various parameters on the performance of the socketed pile groups in terms of the development of the induced downdrag forces and associated pile head settlements. In general, pile–soil–pile interaction has the beneficial effect of reducing the downdrag forces and settlements of the group piles when compared to the corresponding single pile values, provided that the soil settlements are not so large as to cause full slippage at the interface in all the piles. Reasonable agreement is obtained between the theoretical and experimental results for pile groups subjected to negative skin friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号