首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

2.
Walker Creek in Marin County, California is a coastal stream draining to Tomales Bay, which lies in the San Andreas Rift Zone. Its valley contains an alluvial fill with a basal gravel dated at 5000 years BP. In upstream parts of the watershed, channels are incised arroyo-like in the fill leaving the valley floor standing as a high terrace averaging 5·5 m (18 ft) high. Below this terrace is an inner terrace of historic age that stands 2·4 m (8 ft) above the streambed. The stratigraphy and morphology of this valley are seen in others nearby, and indicate that in the last half of Holocene time in this region a single episode of valley alluviation was followed by two episodes of valley cutting. The second episode of valley cutting is occurring in the present time. During the last 60 years the flow has become seasonal, the stream has incised 1·5 m (5 ft) below the inner terrace in upstream reaches, aggraded 1·2 m (4 ft) in downstream reaches, and extended its estuary. Incision upstream has begun to re-expose the bedrock valley floor and is associated with aggradation downstream that has caused the flood plain to overtop both terraces. This has decreased the stream's gradient. Using a stream that is currently effecting major changes in its valley and channel morphology, two aspects of hydraulic adjustment in fluvial systems are examined. The changes in the average slope of the longitudinal profile are small but measureable. Profile concavity has not changed measurably. The various profiles that have existed in Holocene time show that stream gradient can be, but is not necessarily, slightly adjusted during valley filling and cutting. Flow measurements at a high discharge show that the channel has begun to assume the hydraulic geometry of an ephemeral channel. Adjustments of depth, velocity, and roughness appear to be hydraulic adjustments in response to changing watershed conditions.  相似文献   

3.
Flow diversions are widespread and numerous throughout the semi‐arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic and geomorphic conditions existing in the areas subject to fluvial processes. We use geomorphic and vegetation data from low‐gradient (≤3%) streams in the Rocky Mountains of north‐central Colorado to assess potential effects of diversion. Data were collected at 37 reaches, including 16 paired upstream and downstream reaches and five unpaired reaches. Channel geometry data were derived from surveys of bankfull channel dimensions and substrate. Vegetation was sampled using a line‐point intercept method along transects oriented perpendicular to the channel, with a total of 100 sampling points per reach. Elevation above and distance from the channel were measured at each vegetation sampling point to analyze differences in lateral and vertical zonation of plant communities between upstream and downstream reaches. Geomorphic data were analyzed using mixed effects models. Bankfull width, depth, and cross‐sectional area decreased downstream from diversions. Vegetation data were analyzed using biological diversity metrics, richness, evenness and diversity, as well as multivariate community analysis. Evenness increased downstream from diversions, through reduced frequency of wetland indicator species and increased frequency of upland indicator species. Probability of occurrence for upland species downstream of a diversion increases at a greater rate beginning around 0·5 m above active channel. The results suggest that channel morphology and riparian plant communities along low‐gradient reaches in montane environments in the Colorado Rocky Mountains are impacted by diversion‐induced flow alteration, with the net effect of simplifying and narrowing the channel and homogenizing and terrestrializing riparian plant communities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

5.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Stream response to surface coal mining and reclamation was studied in 29 small (0·13 to 5·72 km2) watersheds located in the bituminous coal fields of Central Pennsylvania. These basins, up to 82 per cent mined, were selected from 176 first-order tributaries of Beech Creek with similar vegetation, soil, lithology, and basin characteristics. Measurements were made at 262 cross-sections (an average of nine cross-sections per stream) of channel cross-section area, bankfull width, mean bankfull depth, dimensions of the largest moving blocks, stream slope, valley-side slope, basin area, and mined area. Observed differences in channel morphology were related to differences in extent of mining by means of scatter plots, correlation, cluster analysis, and bivariate regression. Stream response to increased peak discharge and channel shear stress produced by increased surface runoff from regraded mine spoil takes the form of enlarged channels and increases in the size of moving blocks. Large basin areas appear to dampen the effect of mining, resulting in limited channel enlargement with greater extent of mining. In contrast, where peak discharges and associated shear stresses exceed the combined erosional resistance of floodplain vegetation, colluvial blocks, and channel banks, streams adjust extensively to higher levels of mining, causing an abrupt increase in the size of transported blocks and eroded channels. In the first-order basins studied, this stepped response occurs at approximately 0·45 km2 mined area and 50 per cent of the total basin area mined. For streams that have exceeded both threshold levels, disequilibrium is demonstrated by a strong, positive correlation between local stream slope and basin area. Where both threshold levels of mining are exceeded, steep channel slopes reinforce the tendency of stream cross-sections to increase with greater disturbance by mining, necessitating that these streams rapidly adjust their morphology in order to attain a new equilibrium which is compatible with the conditions imposed by mining and reclamation.  相似文献   

7.
Feedback between hydrogeomorphological processes and riparian plants drives landscape dynamics and vegetation succession in river corridors. We describe the consequences of biogeomorphological feedback on the formation and dynamics of vegetated fluvial landforms based on observations from the channelized Isère River in France. The channel was laterally confined with embankments and mostly straightened. From the beginning of the 1970s to the end of the 1990s, alternate bars were progressively but heavily colonized by vegetation. This context presented an exceptional opportunity to analyse temporal adjustments between fluvial landforms and vegetation succession from bare gravel bars to mature upland forest as the consequence of biogeomorphological interactions. Based on a GIS analysis of aerial photographs (between 1948 and 1996), we show that the spatiotemporal organization of vegetated bars within the river channel observed in 1996 resulted from a bioconstruction and biostabilization effect of vegetation and interactions between bars of varying age, size and mobility. Field measurements in 1996 reflected how a strong positive feedback between sedimentary dynamics and riparian vegetation succession resulted in the construction of the vegetated bars. A highly significant statistical association of geomorphological and vegetation variables (RV of co-inertia analysis = 0.41, p < 0.001) explained 95% of the variability in just one axis, supporting the existence of very strong feedback between geomorphological changes (i.e. the transformation of small bare alternate bars to fluvial landforms covered by mature upland forest, and vegetation succession). Such dynamics reflect the fluvial biogeomorphological successions model, as described by the authors earlier. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
In a basin developed on a stream table, effluent subsurface flow supported a channel network that evolved by a combination of headward growth, lateral widening and divide decay. The area occupied by the developing network increased with time. Circularity was used to characterize network evolution which occurred in three phases (initiation, extension and abstraction). Basin sediment discharge declined exponentially with time. Pronounced quasi-cyclic variability was superimposed upon this general trend. Some of the variability was directly linked to changes in the amount of sediment supplied to the channel. The variation of mean network sediment yield (mean sediment discharge scaled by network area) with time adequately described the general decline in sediment discharge as the network evolved.  相似文献   

9.
Suspended sediment dynamics during the period 1964–1985 are examined along the mainstem of Changjiang (Yangtze River). The period represents a basin condition prior to major changes in land management policy and dam building on the river's mainstem. The downstream sediment dynamics reflect basin geology and topography and channel morphology. Sediment exchange within the mainstem was calculated by the development of reach sediment balances that reveal complex temporal and spatial patterns. There is relatively little sediment exchange in the upper, bedrock‐controlled reaches, with systematic increases in the downstream alluvial reaches. Degrading, transfer, and aggrading reaches were identified. Relations between input and output in all reaches were significant but no relation was found between sediment exchange and input/output. Comparison between ‘short‐term’ (22 years) and ‘long‐term’ (52 years) records demonstrates the importance of the record length in studying the suspended sediment dynamics in a large fluvial system. The longer record yielded better correlation and different trends than the shorter record. Sediment transfer (output/input ratio) changes downstream: the dominance of the upstream contributing area in sustaining the appearance of net degradation through most of the river system highlights the importance of reach length on characterisation of suspended sediment dynamics in large fluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

12.
Channel erosion along the Carmel river,Monterey county,California   总被引:1,自引:0,他引:1  
Historic maps, photographs, and channel cross-sections show that the channel of the Carmel River underwent massive bank erosion, channel migration, and aggradation in a major flood in 1911, then narrowed and incised by 1939. The channel was stable until 1978 and 1980, when bank erosion affected some reaches but not others. The narrowing and incision were in response to a lack of major floods after 1914 and construction in 1921 of a dam that cut off sediment supply from the most actively eroding half of the basin. Localized erosion in 1978 and 1980 occurred during low magnitude events along reaches whose bank strength had been reduced by devegetation. These events illustrate that the stability of a fluvial system can be disrupted either by application of a large erosive force in a high magnitude event (the 1911 flood) or in a low magnitude event, by reducing the resistance to erosion (bank devegetation). The Carmel River is a potentially unstable system. Its discharge and slope characteristics place it near the threshold between meandering and braided. On the Lower Carmel, the presence of bank vegetation can make the difference between a narrow, stable meandering channel and a wide shifting channel with braided reaches.  相似文献   

13.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Gaudix Basin developed as an endorheic depression during the Upper Miocene-Upper Pleistocene. Its principal palaeogeographical lcharacteristics are a large lake in the eastern sector, an axial fluvial system and two fluvial systems transverse to it in the western sector. The uplift of a central sector of the Betic Cordillera during the Upper Pleistocene affected the study area, causing northward tilting from the Internal Zone of the cordillera (Sierra Nevada and Sierra de Baza), step-faulting of the Plio-Pleistocene infill of the ancient basin (leaving more northern sectors in a lower topographical position), alteration of fluvial current profiles and displacement of the ancient Axial System to a position very close to the divide between the ancient endorheic Gaudix Basin and the Guadalquivir Basin. This facilitated capture of the endorheic basin by the headward erosion of a tributary of the Guadalquivir River. The region then began to be rapidly eroded, as the new base level was now some 500 m lower than that of the ancient basin. The present drainage network is similar to that of the ancient endorheic basin as regards the location of the main streams and the distribution of drainage patterns and fluvial styles, although flow reversal is found in some stretches and a barbed drainage pattern appears locally. As a result of the inheritance of drainage from the ancient basin, fluvial superimposition is found in some stretches of the main streams. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

16.
Historical records indicate that gray wolves (Canis lupus) were extirpated from the upper Gallatin River Basin in the early 1900s. Following the removal of these large carnivores, elk (Cervis elaphus) began to increasingly browse streamside vegetation in the winter range, causing widespread loss of formerly extensive willow (Salix spp.) communities. Historical aerial photographs and chronosequences of ground photographs were used to characterize general changes in vegetation and channel morphology over time. In August of 2004, riparian vegetation and channel cross‐sections were surveyed along three reaches of the upper Gallatin River. Reach A was located upstream of the elk winter range (control reach) whereas reaches B and C (treatment reaches) were located within the elk winter range. Willow cover on floodplains averaged 85 per cent for reach A, but only 26 per cent and 5 per cent for reaches B and C, respectively. The average return period of calculated bankfull discharges was 3·1 yrs for reach A but increased to 32·4 yrs and 10·6 yrs for reaches B and C, respectively. The long‐term loss of streamside vegetation allowed channels to generally increase in hydraulic capacity (via increases in width, incision or both) and decrease their hydrologic connectivity with adjacent floodplains. This study documents, perhaps for the first time, the resultant impacts to riparian vegetation functions and stream channel characteristics following the extirpation of a large mammalian carnivore. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Morphometric variables associated with 41 debris‐?ow and 18 ?uvial fans and their basins in the Southern Alps of New Zealand are examined. The results show statistically signi?cant differences in the area, maximum elevation, relief and ruggedness (Melton's R) of the basin and the area, gradient, and apex and toe elevations of the fan between debris‐?ow and ?uvial sites. Concavity of the fan longitudinal pro?le also differs between the two fan types, although this could not be tested statistically. Most of these morphometric differences re?ect differences in processes and environmental controls on them. Discriminant analysis indicates that basin area and fan gradient best differentiate the two fan types by process. Moderately strong correlations exist, on both debris‐?ow and ?uvial fans, between basin area or Melton's R and fan area. Correlations between basin area or Melton's R and fan gradient are generally weaker. The results of this study also indicate that on debris‐?ow‐prone fans the fan gradient and basin Melton's R have lower thresholds which overlap little with upper thresholds associated with basins where only stream?ow reaches the fan. These thresholds may therefore have value in preliminary morphometric assessments of debris‐?ow hazard on fans in the Southern Alps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper examined sequence‐stratigraphic features of a gravelly fluvial system of the Iwaki Formation, which developed in a forearc‐basin setting in Northeast Japan during the Eocene through Oligocene. On the basis of three‐dimensional architectural element analysis, we discriminated three major cycles of channel complexes, which contain ten component channel deposits in total in the fluvial succession. Component channel deposits in the uppermost part of each cycle are sandier and associated with overbank muddy deposits and coal beds as compared with those in the lower part of the cycle. Mean clast‐size also decreases upsection in the entire gravelly fluvial deposits. The fluvial succession is interpreted to have been deposited in response to an overall rise in relative sea level that was superimposed by three short‐term relative sea‐level rises on the basis of vertical stacking patterns and component lithofacies features of channel deposits, and of correlation of the fluvial succession with an age‐equivalent marine succession in an area about 50 km offshore. However, geometry and stacking patterns of the channel complexes do not exhibit any distinct temporal variation and amalgamated channel and bar deposits are dominant throughout the transgressive fluvial succession. On the other hand, an overall fining‐upward pattern of the entire Iwaki Formation fluvial deposits in association with three component fining‐upward patterns is distinct, and is interpreted to be consistent with the tenet of the standard fluvial sequence‐stratigraphic models. This indicates that the present example represents one type of variation in the standard fluvial sequence‐stratigraphic models, possibly reflecting the forearc‐basin setting, which is generally represented by higher valley slope, higher shedding of coarse‐grained sediments, and shorter longitudinal profiles to the coastal area as compared with a passive‐continental‐margin setting.  相似文献   

20.
Proglacial stream development was studied in coastal British Columbia and Washington, focusing on reaches exposed by post‐Little Ice Age (LIA) glacier retreat, to address three principal questions: (i) Does the legacy of LIA glaciation influence the evolution of channel morphology? (ii) How long does it take for riparian forest to establish following glacier retreat? (iii) Can newly exposed proglacial streams provide suitable fish habitat? Channel morphologies were identified by field surveys of 69 reaches in 10 catchments. Riparian forest development and potential fish habitat were characterized in those reaches and an additional 22 catchments using GIS analysis. The landscape template imposed by the Quaternary glaciation appears to override most of the modern effects of the LIA in controlling channel‐reach morphology. Binary logistic regression analysis identified elevation and time since deglaciation as primary controls on the presence of riparian forest. At higher elevations, establishment of morphologically functional riparian forest could take several centuries, prolonged by channel instability associated with post‐LIA sediment inputs. Of the recently deglaciated streams included in this analysis, the majority (86%) of the total length was of suitable gradient for fish and could be accessed either by downstream populations or from adjacent lakes. Predicted maximum weekly average stream temperature (MWAT) indicated that the post‐LIA study streams were thermally suitable for cold‐water fish. A future scenario of glacier loss would cause a 14% decline in accessible cold‐water thermal habitat in post‐LIA streams. Decreased summer flows due to glacier retreat could further limit usable habitat by reducing stream depths and wetted perimeters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号