首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerous approaches exist for the prediction of the settlement improvement offered by the vibro-replacement technique in weak or marginal soil deposits. The majority of the settlement prediction methods are based on the unit cell assumption, with a small number based on plane strain or homogenisation techniques. In this paper, a comprehensive review and assessment of the more popular settlement prediction methods is carried out with a view to establishing which method(s) is/are in best agreement with finite element predictions from a series of PLAXIS 2D axisymmetric analyses on an end-bearing column. The Hardening Soil Model in PLAXIS 2D has been used to model the behaviour of both the granular column material and the treated soft clay soil. This study has shown that purely elastic settlement prediction methods overestimate the settlement improvement for large modular ratios, while the methods based on elastic–plastic theory are in better agreement with finite element predictions at higher modular ratios. In addition, a parameter sensitivity study has been carried out to establish the influence of a range of different design parameters on predictions obtained using a selection of elastic–plastic methods.  相似文献   

2.
The finite‐element (FE) method is used for modeling geotechnical and pavement structures exhibiting significant non‐homogeneity. Property gradients generated due to non‐homogeneous distributions of moisture is one such example for geotechnical materials. Aging and temperature‐induced property gradients are common sources of non‐homogeneity for asphalt pavements. Investigation of time‐dependent behavior combined with functionally graded property gradation can be accomplished by means of the non‐homogeneous viscoelastic analysis procedure. This paper describes the development of a generalized isoparametric FE formulation to capture property gradients within elements, and a recursive formulation for solution of hereditary integral equations. The formulation is verified by comparison with analytical and numerical solutions. Two application examples are presented: the first describes stationary crack‐tip fields for viscoelastic functionally graded materials, and the second example demonstrates the application of the proposed procedures for efficient and accurate simulations of interfaces between layers of flexible pavement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
5.
边坡稳定有限元分析中的三个问题   总被引:4,自引:4,他引:4  
王栋  年廷凯  陈煜淼 《岩土力学》2007,28(11):2309-2313
对大型有限元软件ABAQUS进行二次开发,提出了自动搜索安全系数的边坡稳定有限元分析模型。在此基础上进行大量变动参数研究,探讨了迭代不收敛、塑性区贯通及等效塑性应变贯通等3种边坡失稳判据的内在联系与适用性,其中迭代不收敛判据易于自动搜索的编程实现,且较少依赖研究者的经验。大多数情况下单元阶次不影响安全系数的确定,但一阶单元有时可能高估安全系数,建议采用二阶单元。基于更新拉格朗日格式实施边坡稳定大变形有限元分析,结果表明迭代不收敛准则不适用于大变形分析。  相似文献   

6.
In the coupled finite element analysis of the two-phase, saturated soils the pore pressure could decrease below the atmospheric pressure in particular when the plastic dilation of the skeleton is accounted for. The consequent reduction of the bulk modulus of the liquid phase is here modelled in a simplified manner through a tension cut off on the pore pressure. Two alternative approaches are outlined in the framework of the finite element method. The first one introduces a unilateral constraint on the nodal pore pressures and involves manipulations on matrices of the assembled mesh, whilst the second approach requires calculations solely at the element level. The effects of the pore pressure tension cut off are illustrated through some undrained test examples in elastic–plastic regime.  相似文献   

7.
In the present study, the two-dimensional blast model has been simulated using finite element software Abaqus/CAE. The John–Wilkins–Lee equation of state has been used to calculate the pressure caused by the release of the chemical energy of the explosive. Detonation point from center of hole has been defined for the traveling path of explosive energy. Elastoplastic dynamic failure constitutive with kinematic hardening model was adopted for rock mass responses under high explosive pressure to understand the mechanism of blast phenomena. In this model, it is assumed that failure of rock occurs under tensile failure when yield plastic stress exceeded to its static tensile strength. The hydrostatic pressure was used as a failure measure to model dynamic spall or a pressure cut off. Variation of detonation velocity has been measured in terms of simulation blast output energies index results.  相似文献   

8.
For non-linear dynamic problems, it has been recognized that an explicit time-integration method of approach is a very efficient way of solving the dynamic equations of motion. The numerical formulation and computation for such problems fall into the two general categories of finite elements and finite differences. Over the years, there have been many arguments between schools which adopt the finite element approach and those which adopt the finite difference approach. At one extreme, arguments areconcerned with the superiority of each approach and at the other end of the spectrum the arguments are about which approach is a subset of the other. The most common of these arguments are concerned with efficiency and accuracy. This publication addresses the accuracy issue with specific reference to explicit calculations in which the analysis domain is discretized into triangular or quadrilateral plane-strain elements. It concludes that if the same basic assumptions are made in the two approaches, they, will give identical answers for problems in this category.  相似文献   

9.
In this study, dynamic behavior and earthquake resistance of Alibey earth dam was investigated. The dam was modeled with four node plane-strain finite elements (FE) and displacement-pore pressure coupled FE analyses were performed. Nonlinear material models such as pressure dependent and independent multi yield materials were implemented during the analyses. Transient dynamic FE analyses were performed with Newmark method. The Newton-Raphson solution scheme was adopted to solve the equations. Liquefaction and/or cyclic mobility effects were considered during the analysis. For the FE analyses, OpenSees (Open System for Earthquake Engineering Simulation) framework was adopted.  相似文献   

10.
Piles may be subjected to lateral soil pressures as a result of lateral soil movements from nearby construction‐related activities such as embankment construction or excavation operations. Three‐dimensional finite element analyses have been carried out to investigate the response of a single pile when subjected to lateral soil movements. The pile and the soil were modelled using 20‐node quadrilateral brick elements with reduced integration. For compatibility between the soil–pile interface elements, 27‐node quadrilateral brick elements with reduced integration were used to model the soil around the pile adjacent to the soil–pile interface. A Mohr–Coulomb elastic–plastic constitutive model with large‐strain mode was assumed for the soil. The analyses indicate that the behaviour of the pile was significantly influenced by the pile flexibility, the magnitude of soil movement, the pile head boundary conditions, the shape of the soil movement profile and the thickness of the moving soil mass. Reasonable agreement is found between some existing published solutions and those developed herein. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This contribution considers the critical time increment (Δtcrit) to achieve stable simulations using particulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. The Δtcrit is determined by considering the maximum vibration frequency of the system. Based on a series of parametric studies, Δtcrit is shown to depend on the particle mass (m), the maximum contact stiffness (Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating Δtcrit to m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios considered here, these can inform DEM analysts selecting appropriate Δtcrit values.  相似文献   

12.
A method of analysis is presented for problems in which the deformation of the individual blocks play a significant role. The blocks are modeled as single quadrilateral elements and a constitutive model has been presented for computing the contact forces. In order to illustrate the influence of the deformation of the individual blocks two examples have been presented. The results of the analysis with deformable blocks and with rigid blocks are compared. These examples clearly demonstrate the importance of the deformation of blocks in the class of problems represented by these two examples.  相似文献   

13.
王栋  胡玉霞 《岩土力学》2008,29(8):2081-2086
基于网格重分和改进的REP应力恢复技术,建立了三维大变形有限元方法研究拉力作用下方形平板锚与黏性土地基的相互作用。与常规的小变形有限元不同,大变形分析能够完整模拟平板锚的上拔过程,如果平板锚底面与土体始终保持接触,三维大变形计算得到的方板与圆板抗拉力相差很小;在无重土中的平板在加载初始即与土体脱离时,方板的承载力略低于圆板。大变形分析给出的立即脱离承载力系数与模型试验数据基本吻合,而小变形有限元与下限分析忽略了方形平板锚的长距离上拔过程对其抗拉力的影响,可能高估深锚的承载力。改进估计方形平板锚抗拉承载力的简化方法,方便于工程应用。  相似文献   

14.
We investigate the effects of using different types of statistical distributions (lognormal, gamma, and beta) to characterize the variability of Young’s modulus of soils in random finite element analyses of shallow foundation settlement. We use a two-dimensional linear elastic, plane-strain, finite element model with a rigid footing founded on elastic soil. Poisson’s ratio of the soil is considered constant, and Young’s modulus is characterized using random fields with extreme values of the scale of fluctuation. We perform an extensive sensitivity analysis to compare the distributions of computed settlements when different types of statistical distributions of Young’s modulus, different coefficients of variation of Young’s modulus, and different scales of fluctuation of the random field of Young’s modulus are considered. A large number of realizations are employed in the Monte Carlo simulations to investigate the influence of the tails of the statistical distributions under study. Results indicate the type of distribution considered for characterization of the random field of Young’s modulus can have a significant impact on computed settlement results. In particular, considering different types of distributions of Young’s modulus can lead to more than 600% differences on computed mean settlements for cases with high coefficient of variation and large scale of fluctuation of Young’s modulus. The effect of considering different types of distributions is reduced, but not completely eliminated, for smaller coefficients of variation of Young’s modulus (because the differences between distributions decrease) and for small values of the scale of fluctuation of Young’s modulus (because of an identified “averaging effect”).  相似文献   

15.
The purpose of this paper is to investigate the estimation of dynamic elastic behavior of the ground using the Kalman filter finite element method. In the present paper, as the state equation, the balance of stress equation, the strain–displacement equation and the stress–strain equation are used. For temporal discretization, the Newmark ¼ method is employed, and for the spatial discretization the Galerkin method is applied. The Kalman filter finite element method is a combination of the Kalman filter and the finite element method. The present method is adaptable to estimations not only in time but also in space, as we have confirmed by its application to the Futatsuishi quarry site. The input data are the measured velocity, acceleration, etc., which may include mechanical noise. It has been shown in numerical studies that the estimated velocity, acceleration, etc., at any other spatial and temporal point can be obtained by removing the noise included in the observation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
极限分析有限元法讲座—— Ⅰ岩土工程极限分析有限元法   总被引:35,自引:1,他引:35  
经典岩土工程极限分析方法一般采用解析方法,有些还要对滑动面作假设,且不适用于非均质材料,尤其是强度不均的岩石工程,从而使极限分析法的应用受到限制。随着计算技术的发展,极限分析有限元法应运而生,它能通过强度降低或者荷载增加直接算得岩土工程的安全系数和滑动面,十分贴近工程设计。为此,探讨了极限分析有限元法及其在边坡、地基、隧道稳定性计算中的应用,算例表明了此法的可行性,拓宽了该方法的应用范围。随着计算机技术与计算力学的发展,岩土工程极限分析有限元法正在成为一门新的学问,而且有着良好的发展前景。  相似文献   

18.
In this paper, a large deformation finite element (LDFE) approach termed ‘remeshing and interpolation technique with small strain (RITSS)’ is extended from static to dynamic soil-structure interaction applications. In addition, a technique termed ‘element addition’ is developed to improve the computational efficiency of both static and dynamic LDFE analyses that involve moving boundaries. The RITSS approach is based on frequent mesh generation to avoid element distortion. In dynamic RITSS, the field variables mapped from the old to the new mesh involve not only the stresses and material properties, but also the nodal velocities and accelerations. Using the element addition technique, new soil elements are attached to the domain boundaries periodically when the soil near the boundaries becomes affected by large displacements of the structure. The procedures of this Abaqus-based dynamic LDFE analysis and element addition technique are detailed, and the robustness of the techniques is validated and assessed through three example analyses: penetration of a flat footing into a half-space and movement of rigid and deformable landslides down slopes.  相似文献   

19.
20.
Unsaturated soils are three‐phase porous media consisting of a solid skeleton, pore liquid, and pore gas. The coupled mathematical equations representing the dynamics of unsaturated soils can be derived based on the theory of mixtures. Solution of these fully coupled governing equations for unsaturated soils requires tremendous computational resources because three individual phases and interactions between them have to be taken into account. The fully coupled equations governing the dynamics of unsaturated soils are first presented and then two finite element formulations of the governing equations are presented and implemented within a finite element framework. The finite element implementation of all the terms in the governing equations results in the complete formulation and is solved for the first time in this paper. A computationally efficient reduced formulation is obtained by neglecting the relative accelerations and velocities of liquid and gas in the governing equations to investigate the effects of fluid flow in the overall behavior. These two formulations are used to simulate the behavior of an unsaturated silty soil embankment subjected to base shaking and compared with the results from another commonly used partially reduced formulation that neglects the relative accelerations, but takes into account the relative velocities. The stress–strain response of the solid skeleton is modeled as both elastic and elastoplastic in all three analyses. In the elastic analyses no permanent deformations are predicted and the displacements of the partially reduced formulation are in between those of the reduced and complete formulations. The frequency of vibration of the complete formulation in the elastic analysis is closer to the predominant frequency of the base motion and smaller than the frequencies of vibration of the other two analyses. Proper consideration of damping due to fluid flows in the complete formulation is the likely reason for this difference. Permanent deformations are predicted by all three formulations for the elastoplastic analyses. The complete formulation, however, predicts reductions in pore fluid pressures following strong shaking resulting in somewhat smaller displacements than the reduced formulation. The results from complete and reduced formulations are otherwise comparable for elastoplastic analyses. For the elastoplastic analysis, the partially reduced formulation leads to stiffer response than the other two formulations. The likely reason for this stiffer response in the elastoplastic analysis is the interpolation scheme (linear displacement and linear pore fluid pressures) used in the finite element implementation of the partially reduced formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号