首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The range of genetic and climatic interpretations of Scottish ‘hummocky moraine’ is reviewed, and new data are presented from the Isle of Skye, western Scotland, which are used as the basis of a genetic classification. ‘Hummocky moraine’ on Skye is shown to consist of three principal sediment-landform associations: (1) recessional moraines; (2) chaotic ice-stagnation moraines; and (3) drumlins and fluted moraines. The recessional moraines consist of transverse moraine ridges and chains of mounds, and were formed by a combination of glaciotectonics and debris accumulation at active ice margins. Second, chaotic moraines consist of randomly-distributed hummocks, mounds and rim-ridges and record deposition in contact with inactive ice. Finally, drumlins and fluted moraines are longitudinally-oriented subglacial bedforms formed by a combination of lodgement and sediment deformation. Individual occurrences of ‘hummocky moraine’ may comprise one, two or all of these associations. The detailed study and differentiation of Scottish ‘hummocky moraine’ provides a valuable source of information on former glacier dynamics and landscape change.  相似文献   

2.
The study of De Geer moraines in Raudvassdalen shows that most De Geer moraines are likely to have a common origin at the grounding line of glaciers despite variability in composition of the ridges. Pebble fabric, grain‐size analysis and structures within exposures of De Geer moraines in the Raudvassdalen area, with compositions ranging from mostly till to mostly sorted sediment, indicate that the ridges all formed at the grounding line of a tidewater glacier by common processes: deposition of sorted sediments beyond the grounding line followed by deformation of pre‐existing sediments and deposition of till as the glacier overrode the ridges. The compositional variation of the ridges is probably related to the position of the section studied relative to the location of the outlet of subglacial streams. Ridges composed entirely of till form at locations remote from the outlet of subglacial streams, and ridges with a component of sorted sediments form in closer proximity to these streams. This unifying theory of De Geer moraine formation, along with theoretical and geological evidence showing that there are limited physical conditions where basal crevasses can form, suggests that the number of De Geer moraines interpreted to have formed in basal crevasses is probably unrealistic. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

4.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   

5.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

6.
Clast fabric and morphological data have been used to determine the origin of fluted subglacial tills exposed by recent retreat of the Slettmarkbreen glacier, Norway. A new method for the interpretation of clast fabric data allows aspects of the strain and depositional history of the till to be reconstructed. The till formed by a combination of lodgement and subsole deformation by slip along discrete shear planes. Lodgement was dominant for the larger size fractions (>125 mm), while the smaller material was more susceptible to deformation. The fluted till surface reflects the tendency for the till matrix to deform into regions of low confining pressure in the lee of lodged boulders. Downglacier components of till flow are thought to have resulted in significant sediment transfer towards the margin.  相似文献   

7.
Till is of common occurrence in the marine environment and can be both subglacial and proglacial in origin. Former glacial margins are often represented by till tongues, that are interbedded with stratified glaciomarine sediment, and the relationship is readily mappable using seismic reflection techniques. It is inferred that within individual till tongues, sediment-gravity flow deposits form transitional contacts with till of subglacial origin, but these contacts cannot be distinguished on seismic profiles. These unstratified, gravity-induced deposits formed in close proximity to the glacial source at the grounding line are considered to be secondary tills (flow-till complex) in terms of the INQUA classification of tills. Till-tongue successions and till deltas are large, ice-marginal depocentres associated with floating front ice-margins, and appear to be closely related in origin. Tabular and hummocky moraines of the mid-Norwegian Shelf also are considered to be products of floating-front margins and represent a large proportion of the retreat tills formed during ice recession. Seismostratigraphic evidence for channelisation in ice-marginal deposits appears to provide a means of distinguishing between former tidewater and floating-front margins.  相似文献   

8.
JANE K. HART 《Sedimentology》2006,53(1):125-146
The subglacial processes at Briksdalsbreen, Norway, are examined by a combination of sedimentology, thin section and scanning electron microscope (SEM) analysis of till samples from an exposed subglacial surface and from beneath the glacier. Studies of a fluted surface indicate that subglacial deformation is occurring on a field scale with flutes forming behind most clasts 0·6 m high. At the thin section scale (0·014–2·0 mm) it is seen that deformation is by rotation and attenuation and is dependent on till texture. At the SEM scale (0·1–0·4 mm) it is seen that erosion is controlled by abrasion and percussion which produces distinct grain ‘styles’ as part of an erosional continuum. Overall it is shown that rotation and attenuation is a dominant process at all scales and that the clast interactions associated with different scale perturbations within the shear zone control erosion and deposition, as well as landform and fabric production.  相似文献   

9.
In the Omagh Basin, north central Ireland, subglacial diamict ridges lie transverse to southwestward Late Devensian (ca. 23–13 ka) ice flow. These ridges (0.5–2.5 km long, 100–450 m wide, 15–35 m high), are similar morphologically to Rogen moraines, which have not been described previously from the British Isles. The crests of some transverse ridges are streamlined, cross-cut or overprinted by drumlins, whereas other ridges are unmodified and were not affected by later drumlinisation. At Kilskeery, west–east trending eskers overlying unmodified transverse ridges post-date drumlinisation (17–14 14C ka). Esker formation shows that the subglacial thermal regime changed from cold-based, favouring bedform preservation, to warm-based with meltwater flowing through enclosed subglacial channels. Patterns of flow-transverse-ridges and spatial variations in the degree of bedform modification record dynamic changes in regional subglacial environments during the last deglacial cycle. This ice-mass variability cannot be reconciled with current Irish glacial models, which are based on immobile ice centres and ordered stages of ice retreat. In a wider context, these changes in bedform patterns and basal ice regimes have a similar signature to millennial-scale ice-mass oscillations recorded by dated proxy evidence elsewhere in the amphi-North Atlantic. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Throughout the 1980s the annual cycle of ice-front activity along the stationary north margin of the ice-cap Myrdalsjökull, southern Iceland, produced a complex ridge, 4 m high, composed of imbricately stacked slabs of frozen, clast-paved lodgement till dipping up-glacier. Further observations in 1994 revealed that glaciofluvial processes and associated deposits may be involved in the final stage of ridge production depending on local climate and meltwater drainage pattern. It is concluded that at the margin of Myrdalsjökull the progressive stacking of subglacial frozen-on sediment slabs to form a moraine ridge is a fundamentally similar mechanism to that involved in the incremental double-layer model reported from Styggesdalsbreen, southern Norway. This study has also identified internal characteristics which are of potential use for distinguishing between moraine ridges formed by this mechanism and push moraines formed by proglacial thrusting.  相似文献   

11.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
札达盆地及周缘高山区的第四纪冰川遗迹分布广泛,类型齐全、发育连续.特征的冰碛及冰水堆积地貌有:冰水堆积平原或冰水堆积平台、冰碛丘陵等.挤压构造遗迹有:褶皱、断裂表皮构造、压坑、压裂构造、变形砾石等.ESR年代测定结果表明,冰碛形成的最大年龄为2.33Ma.依据冰碛、冰水堆积的特征、分布和形成年代等,区域冰川发育由老到新可划分出:7次冰期、6次间冰期、1次冰缘期、1次新冰期.该区是目前所知青藏高原第四纪冰川遗迹发现最多、保存最全和发育最连续的地区,为青藏高原地区的第四纪冰川演化研究、冰期的划分和对比、古气候古环境的研究,提供了重要的实际资料和依据.   相似文献   

14.
Transverse-to-iceflow ribbed moraine occurs in abundance in the coastal zone of northern Sweden, particularly in areas below the highest shoreline (200–230 m a.s.l.), but occasionally also slightly above. Based on detailed sedimentological and structural investigations of machine-dug sections across five ribbed moraine ridges, it is concluded that these vertically and distally prograding moraine ridges were formed as a result of subglacial folding/thrust stacking and lee-side cavity deposition. The proximal part of the moraines (Proximal Element) was formed by subglacial folding and thrust stacking of sequences of pre-existing sediments, whereas the distal part (Distal Element) was formed by glaciofluvial and gravity-flow deposition in lee-side cavities. The initial thrusting and folding is suggested to be a result of differences in bed rheology at the ice-marginal zone during the early or late melt season, and that generated a compressive zone transverse to ice flow as a result of a more mobile bed up-glacier compared to a less mobile bed down-glacier. It is considered that the lee-side cavities were formed as a result of ice-bed separation on the distal slope of the thrust/fold-created obstruction. The lee-side cavities formed an integral part of a subglacial linked-cavity drainage network regulated in their degree of interconnection, size and shape by fluctuations in basal meltwater pressure/discharge and basal iceflow velocity. The proximal and distal elements of the ribbed moraine ridges are erosively cut and/or draped with a consistently more homogeneous deforming bed till (Draping Element) marking the final phase of ribbed moraine formation considered to be contemporaneous with De Geer moraine formation further down-flow at the receding ice-sheet margin.  相似文献   

15.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

16.
Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine-medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron-Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement-bearing, hybrid deformation-lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.  相似文献   

17.
Three Pleistocene glaciations and two Holocene Neoglacial advances occurred on volcano Ajusco in central Mexico. Lateral moraines of the oldest glaciation, the Marqués, above 3250 m are made of light-gray indurated till and are extensively modified by erosion. Below 3200 m the till is dark red, decomposed, and buried beneath volcanic colluvium and tephra. Very strongly to strongly developed soil profiles (Inceptisols) have formed in the Marqués till and in overlying colluvia and tephra. Large sharp-crested moraines of the second glaciation, the Santo Tomás, above 3300 m are composed of pale-brown firm till and are somewhat eroded by gullies. Below 3250 m the till is light reddish brown, cemented, and weathered. Less-strongly developed soil profiles (Inceptisols) have formed in the Santo Tomás till and in overlying colluvia and tephra. Narrow-crested moraines of yellowish-brown loose till of the third glaciation, the Albergue, are uneroded. Weakly developed soil profiles (Inceptisols) in the Albergue till have black ash in the upper horizon. Two small Neoglacial moraines of yellowish-brown bouldery till on the cirque floor of the largest valley support weakly developed soil profiles with only A and Cox horizons and no ash in the upper soil horizons. Radiocarbon dating of organic matter of the B horizons developed in tills, volcanic ash, and colluvial volcanic sand includes ages for both the soil-organic residue and the humic-acid fraction, with differences from 140 to 660 yr. The dating provides minimum ages of about 27,000 yr for the Marqués glaciation and about 25,000 yr for the Santo Tomás glaciation. Dates for the overlying tephra indicate a complex volcanic history for at least another 15,000 yr. Comparison of the Ajusco glacial sequence with that on Iztaccíhuatl to the east suggests that the Marqués and Santo Tomás glaciations may be equivalent to the Diamantes glaciation First and Second advances, the Albergue to the Alcalican glaciations, and the Neoglacial to the Ayolotepito advances.  相似文献   

18.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

19.
希夏邦马峰东南富曲河谷的冰川沉积和冰川构造   总被引:2,自引:0,他引:2  
在希夏邦马峰(海拔8012m)东南富曲河谷,中更新世以来有三次冰期;即聂拉木、富曲和普罗冰期。它们均可再分为两个亚阶段。聂拉木南的高冰碛平台长3.5m,宽1.5km,厚200m。属于中更新世聂拉木冰期(聂聂雄拉冰期)的巨大山谷冰川沉积,中尼公路从高冰碛平台尾端通过,形成数公里长的冰碛剖面,呈现出美丽多姿的冰川成因类型沉积和冰川构造现象,包括冰下,冰上融出碛,冰内.冰下河道沉积,冰湖沉积,坠碛,流磺等。冰川运动时造成的冰川构造,如断层、滑动面-…等也很清楚,代表了海洋型(暖冰川)冰川沉积和冰川构造特征,是中国目前研究冰川构造最理想的场所。  相似文献   

20.
电子自旋共振(ESR)技术是一种确定物质成分和结构的顺磁性质的分析方法,也能够用于沉积物定年。该方法的测量技术和测年的物理机制等还处于发展阶段。冰川作用过程十分复杂,形成各种类型的冰川沉积物,其顺磁信号的归零机制有显著差异,ESR测年的实验方案也有所差异。因此,识别冰碛物类型,采集合适的样品对于ESR测年的准确性十分重要。冰下融出碛和滞碛经过了冰下磨蚀过程,结构致密,细颗粒基质含量高,石英砂中的一些杂质芯的ESR信号能够衰退。许多冰上融出碛,结构疏松,但细颗粒基质含量高,不但经过了搬运过程中的冰下磨蚀过程使ESR信号衰退,又经历了沉积时的冰上阳光直射过程使信号衰退,一些样品的ESR信号能够完全晒退。冰水湖泊和冰水河流沉积的细砂和粉砂来源于冰下研磨的产物,信号会衰退;在搬运沉积过程中又可能被阳光直射,信号进一步衰退。其它类型的冰碛物的ESR信号衰退机制不明,或粒径不适合用ESR方法测年。采集冰碛物ESR年代样品时,最好同时采集信号衰退机制相同的现代冰碛物样品,以便对照,并用于扣除可能的残留信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号