首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Although alluvial cutoffs record accurately the geometry, bedforms, and bed material of the channel when last active, few attempts have been made to use cutoffs in studies of channel changes. A detailed record of historical channel changes on the lower Hunter River in southeastern Australia has shown that this channel responds to naturally alternating periods of high and low flood activity, called flood- and drought-dominated regimes respectively. Sinuosity decreased from 3·84 in 1870, to 2·66 in 1893 and to 1·38 in 1970 through the development of eight cutoffs. The channel also aggraded with medium sand burying the former bed material of mixed mud, coarse sand, and gravel. Channel straightening was a response to increased flood frequencies during the flood-dominated regimes of the late 19th and 20th centuries, combined with localized river engineering works and increased sand load. Detailed stratigraphic studies were carried out on three neck cutoffs and one chute cutoff which were abandoned in 1890, 1950, 1952, and 1956. A comparison of former and present bed elevations and bed material size showed similar trends to those determined by the historical record, confirming the reliability of cutoffs as indicators of former channel conditions. The sedimentary infills of the cutoffs are not uniformly fine grained as recorded previously in the literature. Relatively thin, fine-grained fills were deposited during the drought-dominated regime of the first half of this century but thick, coarser-grained fills were deposited after 1949 during the flood-dominated regime. All fills fine upwards. Cutoff infills provide a record of changing flood activity and sediment loads.  相似文献   

2.
This paper describes the morphology, sequential development and general sedimentology of concave-bank benches on the Murrumbidgee River of southeastern Australia, and also notes their important role in floodplain formation on certain meandering rivers in western Canada. Benches form against the concave bank (cut-bank) of abruptly curving bends immediately upstream of the point of maximum curvature. As a result of flow deflection against the upstream limb of the convex bank, the channel widens here and produces a zone of expanded flow facilitating flow separation near the upstream limb of the concave bank. Sedimentation within this zone starts with a longitudinal-shaped bar of medium sand forming a platform isolated even at low flow by a narrow secondary channel against the concave bank. Aggradation of the longitudinal-shaped bar with fine sand, mud and organic matter permits the establishment of trees. Further sedimentation, particularly around the young trees, results in the formation of a fully developed bench isolated by the secondary channel from the remainder of the floodplain only during high flows. Observations on confined meandering rivers in western Canada provide evidence of substantial floodplain formation by concave-bank bench accretion, a process distinctly different in character to the more familiar mechanism of lateral point-bar accretion. Furthermore, the preservation of abundant organic debris means that extensive bench deposits may be a source of locally useful natural gas from within floodplain sediments.  相似文献   

3.
We report results from flume experiments designed to study the effect of width variations on the formation and stability of steps in steep streams. To physically model channel width changes we inserted multiple trapezoidal elements in the flume. Two competing effects are in play: a fluidic effect, suggesting that steps are more likely to form in wide areas because of deposition enhanced by lower shear stress, and a granular effect, suggesting that steps are more likely to form in narrow areas because of particle jamming. Our experiments show that width variations enhance the formation of steps. Although steps can form in every location, those in narrow/narrowing areas are more common, more stable and they occupy a larger portion of the channel width. These results stress the importance of particle interactions in coarse-bedded streams and help river engineers by providing a new element to consider when designing step-pool sequences in river restoration projects. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
The middle reaches of the Tsangpo River consist of alternating sections of wide valleys and gorges. The wide valley sections have braided and anastomosing channels, gentle hydraulic gradients, thick alluvial deposits and low terraces. In contrast, the gorge sections exhibit single, straight and deeply entrenched meandering channels with steep hydraulic gradients, bare rock river beds and higher terraces. Several hypotheses have been used to explain these unusual fluvial landforms, but geological, landform and sedimentary analyses along with dating information, suggest that the key could be the active faults across the river valley. All gorge sections are located on the upthrown side of active faults, which mainly occurred in or after the Pliocene, whilst the wide valley sections appear on the downthrown side. The faulting blocked the river and caused the formation of palaeolakes, with thick deposits laid down behind the faults. Therefore, depositional wide valleys were formed and old terraces were buried. On these downthrown sides of the faults, braided and anastomosing channels have developed. On the upthrown sides, strong incision of the river occurred because of the changes of the local base levels and river gradients. As a result, deep gorges and deeply entrenched meandering channels formed in various lithologies. The terraces on the gorge slope indicate different stages of river incision and the related knick points appeared close to the local active faults. Rock resistance is only a minor influence on the alternation of valley forms and river gradients in this area. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Stratigraphy is a fundamental component of floodplain heterogeneity and hydraulic conductivity and connectivity of alluvial aquifers, which affect hydrologic processes such as groundwater flow and hyporheic exchange. Watershed-scale hydrological models commonly simplify the sedimentology and stratigraphy of floodplains, neglecting natural floodplain heterogeneity and anisotropy. This study, conducted in the upper reach of the East River in the East River Basin, Colorado, USA, combines point-, meander-, and floodplain-scale data to determine key features of alluvial aquifers important for estimating hydrologic processes. We compare stratigraphy of two meanders with disparate geometries to explore floodplain heterogeneity and connectivity controls on flow and transport. Meander shape, orientation, and internal stratigraphy affected residence time estimates of laterally exchanged hyporheic water. Although the two meanders share a sediment source, vegetation, and climate, their divergent river migration histories resulted in contrasting meander hydrofacies. In turn, the extent and orientation of these elements controlled the effective hydraulic conductivity and, ultimately, estimates of groundwater transport and hyporheic residence times. Additionally, the meanders’ orientation relative to the valley gradient impacted the hydraulic gradient across the meanders—a key control of groundwater velocity. Lastly, we combine our field data with remotely sensed data and introduce a potential approach to estimate key hydrostratigraphic packages across floodplains. Prospective applications include contaminant transport studies, hyporheic models, and watershed models. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Weichselian geomorphological and fluvial evolution has been recorded in the valley fill of the Reusel, a small tributary of the lower Maas river. It has been studied by means of borehole sections. A first deep incision into the substratum occurred during the Early Weichselian-Lower Pleniglacial. This was followed by aggradation, at first by a braided river, at a later date by a meandering river, dating respectively from the Lower and Middle Pleniglacial. The Upper Pleniglacial aggradation again points to a braided river system. The end of the Pleniglacial is characterized by aeolian infilling of the valley and decreasing carrying capacity of the river.  相似文献   

7.
Effects of coarse woody debris (CWD) on channel morphology and sediment storage were investigated at five sites, representative of first-order to fifth-order streams. In the steep and bedrock-confined stream (first-second order), interaction between the channel and CWD was limited, except where breakage upon falling produced CWD pieces shorter than channel width. Channel widening, steepening and sediment storage associated with CWD were observed predominantly in third- to fifth-order streams. Variation in channel width and gradient was regulated by CWD. In the fifth-order stream, most of the CWD pieces derived from the riparian forest interacted directly with the channel without being suspended by sideslopes. In this system CWD promoted lateral channel migration, but sediment storage was temporary, with annual release and capture.  相似文献   

8.
Samples of sediment collected from the Severn floodplain between Worcester and Gloucester following the severe flooding in January and February 1990, were analysed for their grain size distribution. The results show that most sand was deposited within 20 m of the channel bank, but that fine sand may contribute to flood sediment across the width of the floodplain. James' (1985) numerical model of overbank sedimentation attempts to predict the transfer of sediment to the floodplain during flooding. Geometrical and hydraulic data relating to the Severn flood are used as input for a computer program of James' (1985) model. The pattern of sediment concentrations predicted by the model was compared with that obtained from statistical analysis of the flood sediment. The patterns were found to be similar, so James' (1985) model was considered to predict in a relative sense the distribution of flood sediment.  相似文献   

9.
Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low‐order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand‐replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low‐order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The concept of a ‘niveo-aeolian influence’ on the genesis of northwest European Pleistocene aeolian sand and loess deposits has been advocated in the past both to explain the presence and the absence of lamination. Field experiments were carried out on artificially deposited alternating layers of sand and snow, and of loess and snow, to investigate the role of a niveo-aeolian mode of deposition on resulting sedimentary structures. Field observations of sand plots revealed minor changes in surface morphology typical of denivation surfaces. The thin sections showed a characteristic porous structure. Deformations of the depositional structure and indications for erosion and redeposition were limited. However, the originally smooth aeolian sedimentary surface of the loess changed considerably. The thin sections showed also a porous, spongy structure. Indications were found for disturbances by frost action, liquefaction during melting of the snow and ice, and redeposition of loess by meltwater. The experimental results strongly suggest that sand and loess deposited as niveo-aeolian material are characterized both by a porous structure, and that the original sedimentary structure of the sand is not affected by snowmelt, whereas loess becomes non-laminated. Thus, the intercalation of snow during sedimentation of sand and loess does not in itself induce a laminated structure.  相似文献   

11.
The vertical and horizontal variation of sedimentary fades is the raw data for the interpretation of flood plain history from which palaeohydrological inferences are frequently drawn. Mixed and fine floodplain sediments present problems of interpretation because of a large grain size range and frequent polymodality caused by the mixing of process-associated grain size components. This paper discusses the use of traditional grain size statistics and the use of the mode and multivariate statistics. The mode, although much neglected, is indicative of up-profile grain size changes and has practical advantages over the mean for mixed and fine floodplain sediments. Constrained cluster analysis and principal components analysis are used directly on Coulter counter results. These techniques can rapidly divide a floodplain profile into grain size units and indicate the principal vectors of grain size variation which will be related to the changing processes of deposition. Principal components analysis reveals the importance of the medium to fine silt category in accounting for grain size variations, suggesting that a critical factor in determining the type of alluvial unit deposited is the degree to which it has received fine suspended material. Grain size data from the Lower Severn are used to construct a CM diagram which is compared with a texture triangle. From both the CM and multivariate analysis a generalized backswamp profile is constructed which shows the existence of a coarser top unit caused by the addition of a fine to medium sand component to the underlying sediment during the Late Holocene.  相似文献   

12.
Previous work on stream channels in upland areas of Britain has demonstrated a close control over channel morphology and stability by the rate of coarse sediment supply from the hillslopes of the catchment. Streams fed by large amounts of coarse sediment develop unstable, wide, often braided channels, whereas those with limited coarse sediment supply develop stable, much narrower, often meandering channels. The sediment supply from hillslopes is controlled by thresholds of hillslope stability, storm event frequency, and the coupling between the hillslopes and the channel. Climatically-induced changes in any of these three factors may have implications for channel morphology and stability. This paper examines these implications in British upland fluvial systems, with particular reference to the Howgill Fells, Cumbria, in the contexts of the adjustment of stream channels to sediment supply from erosional gully systems, and their response to and recovery from major flood events.  相似文献   

13.
The impact of changing catchment vegetation type on mean annual runoff has been known for some time, however, the impact on the variability of annual runoff has been established only recently. Differences in annual actual evapotranspiration between vegetation types and the potential effect of changing vegetation type on mean annual runoff and the variability of annual runoff are briefly reviewed. The magnitude of any change in the variability of annual runoff owing to a change in catchment vegetation type is related to the pre‐ and post‐change vegetation types and the seasonality of precipitation, assuming that the variability of annual precipitation remains constant throughout. Significant implications of the relationship between vegetation type and the variability of annual runoff are presented and discussed for water resource management, stream ecology and fluvial geomorphology. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Two centuries of human activities in the Greater Yellowstone Ecosystem (GYE) have strongly influenced beaver activity on small streams, raising questions about the suitability of the historical (Euro‐American) period for establishing stream reference conditions. We used beaver‐pond deposits as proxy records of beaver occupation to compare historical beaver activity to that throughout the Holocene. Forty‐nine carbon‐14 (14C) ages on beaver‐pond deposits from Grand Teton National Park indicate that beaver activity was episodic, where multi‐century periods lacking dated beaver‐pond deposits have similar timing to those previously documented in Yellowstone National Park. These gaps in the sequence of dated deposits coincide with episodes of severe, prolonged drought, e.g. within the Medieval Climatic Anomaly 1000–600 cal yr bp , when small streams likely became ephemeral. In contrast, many beaver‐pond deposits date to 500–100 cal yr bp , corresponding to the colder, effectively wetter Little Ice Age. Abundant historical beaver activity in the early 1900s is coincident with a climate cooler and wetter than present and more abundant willow and aspen, but also regulation of beaver trapping and the removal of wolves (the beaver's main predator), all favorable for expanded beaver populations. Reduced beaver populations after the 1920s, particularly in the northern Yellowstone winter range, are in part a response to elk overbrowsing of willow and aspen that later stemmed from wolf extirpation. Beaver populations on small streams were also impacted by low streamflows during severe droughts in the 1930s and late 1980s to present. Thus, both abundant beaver in the 1920s and reduced beaver activity at present reflect the combined influence of management practices and climate, and underscore the limitations of the early historical period for defining reference conditions. The Holocene record of beaver activity prior to Euro‐American activities provides a better indication of the natural range of variability in beaver‐influenced small stream systems of the GYE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

This study relies on the use and analysis of hydro-meteorological variables, long turbidity time series (from 1988 to 2009, 21 years) and a sedimentary record to provide better understanding of the hydro-sedimentary variability of the karst system near the town of Radicatel, France. Wavelet analysis of rainfall, piezometric level and turbidity, as well as the sediment archive, show common modes of variability. A common spectral composition emphasizes the influence of climate controls. Comparison of the wavelet spectra with the North Atlantic Oscillation (NAO) spectrum clearly highlights the control of the latter on hydro-meteorological variables at the regional level. Climatic fluctuations are recorded in the turbidity signal and in sedimentary fill, as revealed by the 5- to 8-year frequency band, which is characteristic of the NAO index. A climatic signal is recorded in both rainfall events and piezometric levels, and also in sediment transport and deposition at the scale of the local karst system. The overall climate control is also present beyond the local variations and heterogeneities.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR D. Yang  相似文献   

19.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

20.
If the random model, in which all topologically distinct channel networks are equally likely, is assumed valid, then general explanations of network structure from basin geomorphic processes cannot be expected. Tests for the random model are therefore critical to the direction of future work. Proposed tests are based on frequencies of basins of different magnitudes or diameters, and on network maximum widths. Network topology is also shown to be potentially significant in the prediction of basin hydrographs. Network width commonly varies by a factor of 2 × for a given drainage area and drainage density, and is shown to influence peak discharge in proportion. Lag-to-peak can also be predicted better, using network topology. The paper pursues these applications of network topology using random walk theory and simulated random networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号