首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A protaius rampart up to 4.75 m high and consisting largely of angular clasts up to boulder size is described. Bulk samples contained up to 35 per cent fines by weight, compared with up to 68 per cent fines in adjacent till. Although the rampart material was clast dominated, fines filled much of the void space, in contrast with most other protalus ramparts described in the literature.  相似文献   

2.
The distinction between clast-dominant, matrix-dominant and well-graded tills is important in view of the influence of texture on the definition and function of till fines. Till fabric includes a wide range of features of both primary and secondary origin including folds, thrusts, fissures (the macrofabric), disposition of clasts (the mesofabric) and organization of the matrix (the microfabric). The results of fabric analysis of pebble, granule, sand, silt and clay in small depositional landforms beneath currently-active glaciers are described. Deformation fabrics are distinguished in freshly deposited end moraines and flutes. The sand-size material in deformed till may or may not behave in the same way as larger clasts, depending on the degree to which the till is matrix-dominant. While clasts in saturated subglacial till tend to align themselves sub-parallel to the depositional surface, the matrix usually retains abundant pore spaces. With slow, unloaded drainage, clast fabrics appear to be little modified. Such material is potentially unstable and any subsequent increase in overburden and hydraulic pressures may cause slope collapse and flowtill development. It is concluded that examination of a wide range of fabric parameters provides a means of distinguishing tills of diverse origins and of assessing their potential instability.  相似文献   

3.
The temporal pattern of rock‐slope failures (RSFs) following Late Pleistocene deglaciation on tectonically stable terrains is controversial: previous studies variously suggest (1) a rapid response due to removal of supporting ice (‘debuttressing’), (2) a progressive decline in RSF frequency, and (3) a millennial‐scale delay before peak RSF activity. We test these competing models through beryllium‐10 (10Be) exposure dating of five closely‐spaced quartzite RSFs on the Isle of Jura, Scotland, to establish the relationship between timing of failure and those of deglaciation, episodes of rapid warming and periods of rapid glacio‐isostatic uplift. All five dated RSFs occurred at least 720–2240 years after deglaciation, with the probability of failure peaking ~2 ka after deglaciation, consistent with millennial‐scale delay model (3). This excludes debuttressing as an immediate cause of failure, though it is likely that time‐dependent stress release due to deglacial unloading resulted in progressive development of failure planes within the rock. Thaw of permafrost ice in joints is unlikely to have been a prime trigger of failure as some RSFs occurred several centuries after the onset of interstadial warming. Conversely, the timespan of the RSFs coincides with the period of maximum glacio‐isostatic crustal uplift, suggesting that failure was triggered by uplift‐driven seismic events acting on fractured rock masses. Implications of this and related research are: (1) that retreat of the last Pleistocene ice sheets across tectonically‐stable mountainous terrains was succeeded by a period of enhanced rock‐slope failure due to deglacial unloading and probably uplift‐driven seismicity; (2) that the great majority of RSFs in the British Isles outside the limits of Loch Lomond Stadial (= Younger Dryas) glaciation are of Lateglacial (pre‐Holocene) age; and (3) numerous RSFs must also have occurred inside Loch Lomond Stadial (LLS) glacial limits, but that runout debris was removed by LLS glaciers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Schmidt‐hammer exposure‐age dating (SHD) was applied to the problem of dating the diachronous surfaces of five distal river‐bank boulder ramparts deposited by snow avalanches plunging into the Jostedøla and Sprongdøla rivers in the Jostedalsbreen region of southern Norway. Approaches to local high‐precision linear age calibration, which controlled in different ways for boulder roundness, were developed. The mean age (SHDmean) and the maximum age (SHDmax) of surface boulders were estimated for whole ramparts, crests and distal fringes. Interpretation was further assisted by reference to R‐value distributions. SHDmean ages (with 95% confidence intervals) ranged from 520 ± 270 years to 5375 ± 965 years, whereas SHDmax ages (expected to be exceeded by <5% of surface boulders) ranged from 675 to 9065 years. SHD ages from the Jostedøla ramparts tended to be older than those associated with the Sprongdøla, rampart crests were younger than the respective distal fringes, and use of relatively rounded boulders yielded more consistent SHD ages than angular boulders. The SHDmean ages indicate differences in recent levels of snow‐avalanche activity between ramparts and provide insights into rampart dynamics as boulders are deposited on rampart crests and, in smaller numbers, on the distal fringes. SHDmax ages provide minimum age estimates of rampart age (i.e. the time elapsed since the ramparts began to form) and suggest that at least some of the ramparts have been developing since the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The nested moraines of the Chilean Lake District have been used to establish a glacial chronology for southernmost South America. This paper focuses on non-climatic controls which may have modulated the climatic signal. It presents a model for formation of the moraines around Lagos Puyehue and Rupanco where there is a nested complex dating from the last glaciation. These moraines can be divided into two types on the basis of their form, position and constituent materials: rampart moraines are broad amalgamated moraine complexes whilst ridge moraines are narrow single ridges usually located around lakeshores. Both types have lateral moraines with low up-glacier longitudinal gradients. Sections in the moraines show they are largely composed of stratified glaciofluvial sediments overthrust on their proximal flanks by clay-rich diamicts containing reworked glaciofluvial material. Despite their different characteristics, a single model explains the features of both moraine types and their location around the down-glacier ends of the lakes. Moraine formation depends crucially on the presence of a layer of water-saturated, fine, impermeable sediment in the lake basins which allows the glacier lobes to advance with negligible surface gradients, probably on a deforming bed. Although the formation of moraines requires a climatically triggered advance, their precise position is not dictated by climatic factors but by contrasts in sediment permeability and grain-size.  相似文献   

7.
The sediment stratigraphy of a 4 m thick intercalated Holocene alluvial fill and valley floor peat at a site in the Milfield Basin, Northumberland, has been dated by a series of eight 14C assays, and related to a previously analysed pollen record. The sequence extends from the earliest Holocene until c. 2800 cal. BP . Prior to the onset of peat inception, substantial amounts of channel-trenching can be demonstrated to have occurred in the Milfield Basin during the Loch Lomond Stadial. There is no measurable early Holocene accelerated fluvial activity, but a major flooding event occurred at c. 7500 cal. BP , much earlier than recorded elsewhere in the region. The explanation for this is not clear. However, the cessation of mid-Holocene overbank sedimentation at c. 4000–3500 cal. BP is tentatively correlated with slope stability associated with woodland regeneration. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Clast shape measurements have developed into a standard method for reconstructing the transport histories of sediments in glacial environments. The majority of studies use the ‘RA‐C40’ covariance approach, with some researchers routinely including clasts of varying lithologies within their samples. The corollary is that variable lithological properties may control clast form and roundness, rather than debris‐transport mechanisms. Despite this, the role of lithology on clast shape in glacial environments has rarely been analysed. Furthermore, some studies have reported difficulties in using the RA‐C40 co‐variance plot in discriminating clasts that have undergone subglacial transport, and clasts that have been modified by fluvial activity. Results from a glacierized valley in a temperate alpine setting indicate that detailed analysis of clast shape where samples are of uniform lithology, although time consuming, is a useful tool in the investigation of deposits in glaciated environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, two push moraine systems associated with two small subpolar glaciers, Finsterwalderbreen and Penckbreen, were investigated. This study showed that at these glaciers the push moraines were formed in association with surges, which produced a different style of moraine depending on the rheology of the deformed material and the glacial history. The moraines are similar in that they are formed by folded outwash sediments and contain little till. However, the forms of these moraines are very different. The Penckbreen moraine is composed of a lower shallow marine sand, silt and clay, and an upper fluvial sand and gravel. Deformation at this site led to the formation of large anticlines in the silts and clays, with disharmonic smaller folds and thrusts in the upper gravels, above a detachment surface between the fine-grained and overlying coarse-grained lithologies. This deformation decreases towards the foreland, with marine and fluvial sediments responding differently because of their different rheological properties. This moraine was formed during one surge event which occured during the early 19th century. In contrast, the Finsterwalderbreen moraine is composed of outwash sand and gravel, and was formed as the result of a series of surge events. These advances all reached a similar limit and occurred at regular intervals. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
 Coarse, co-ignimbrite lithic breccia, Ebx, occurs at the base of ignimbrite E, the most voluminous and widespread unit of the Kos Plateau Tuff (KPT) in Greece. Similar but generally less coarse-grained basal lithic breccias (Dbx) are also associated with the ignimbrites in the underlying D unit. Ebx shows considerable lateral variations in texture, geometry and contact relationships but is generally less than a few metres thick and comprises lithic clasts that are centimetres to a few metres in diameter in a matrix ranging from fines bearing (F2: 10 wt.%) to fines poor (F2: 0.1 wt.%). Lithic clasts are predominantly vent-derived andesite, although clasts derived locally from the underlying sedimentary formations are also present. There are no proximal exposures of KPT. There is a highly irregular lower erosional contact at the base of ignimbrite E at the closest exposures to the inferred vent, 10–14 km from the centre of the inferred source, but no Ebx was deposited. From 14 to <20 km from source, Ebx is present over a planar erosional contact. At 16 km Ebx is a 3-m-thick, coarse, fines-poor lithic breccia separated from the overlying fines-bearing, pumiceous ignimbrite by a sharp contact. This grades downcurrent into a lithic breccia that comprises a mixture of coarse lithic clasts, pumice and ash, or into a thinner one-clast-thick lithic breccia that grades upward into relatively lithic-poor, pumiceous ignimbrite. Distally, 27 to <36 km from source Ebx is a finer one-clast-thick lithic breccia that overlies a non-erosional base. A downcurrent change from strongly erosional to depositional basal contacts of Ebx dominantly reflects a depletive pyroclastic density current. Initially, the front of the flow was highly energetic and scoured tens of metres into the underlying deposits. Once deposition of the lithic clasts began, local topography influenced the geometry and distribution of Ebx, and in some cases Ebx was deposited only on topographic crests and slopes on the lee-side of ridges. The KPT ignimbrites also contain discontinuous lithic-rich layers within texturally uniform pumiceous ignimbrite. These intra-ignimbrite lithic breccias are finer grained and thinner than the basal lithic breccias and overlie non-erosional basal contacts. The proportion of fine ash within the KPT lithic breccias is heterogeneous and is attributed to a combination of fluidisation within the leading part of the flow, turbulence induced locally by interaction with topography, flushing by steam generated by passage of pyroclastic density currents over and deposition onto wet mud, and to self-fluidisation accompanying the settling of coarse, dense lithic clasts. There are problems in interpreting the KPT lithic breccias as conventional co-ignimbrite lithic breccias. These problems arise in part from the inherent assumption in conventional models that pyroclastic flows are highly concentrated, non-turbulent systems that deposit en masse. The KPT coarse basal lithic breccias are more readily interpreted in terms of aggradation from stratified, waning pyroclastic density currents and from variations in lithic clast supply from source. Received: 21 April 1997 / Accepted: 4 October 1997  相似文献   

12.
This paper presents detailed geomorphological and sedimentological investigations of small recessional moraines at Fjallsjökull, an active temperate outlet of Öræfajökull, southeast Iceland. The moraines are characterized by striking sawtooth or hairpin planforms, which are locally superimposed, giving rise to a complex spatial pattern. We recognize two distinct populations of moraines, namely a group of relatively prominent moraine ridges (mean height ~1.2 m) and a group of comparatively low-relief moraines (mean height ~0.4 m). These two groups often occur in sets/systems, comprising one pronounced outer ridge and several inset smaller moraines. Using a representative subsample of the moraines, we establish that they form by either (i) submarginal deformation and squeezing of subglacial till or (ii) pushing of extruded tills. Locally, proglacial (glaciofluvial) sediments are also incorporated within the moraines during pushing. For the first time, to our knowledge, we demonstrate categorically that these moraines formed sub-annually using repeat uncrewed aerial vehicle (UAV) imagery. We present a conceptual model for sub-annual moraine formation at Fjallsjökull that proposes the sawtooth moraine sequence comprises (i) sets of small squeeze moraines formed during melt-driven squeeze events and (ii) larger push moraines formed during winter re-advances. We suggest the development of this process-form regime is linked to a combination of elevated temperatures, high surface meltwater fluxes to the bed and emerging basal topography (a depositional overdeepening). These factors result in highly saturated subglacial sediments and high porewater pressures, which induces submarginal deformation and ice-marginal squeezing during the melt season. Strong glacier recession during the summer, driven by elevated temperatures, allows several squeeze moraines to be emplaced. This process-form regime may be characteristic of active temperate glaciers receding into overdeepenings during phases of elevated temperatures, especially where their englacial drainage systems allow efficient transfer of surface meltwater to the glacier bed near the snout margin. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

13.
The Athabasca Glacier, resting on a rigid bed, provides an excellent example of subglacial ice and till erosion. The presence of a thin mobile till layer is shown by the presence of flutes, saturated till layer, push moraines and ploughed boulders. Cross‐cutting striations, v‐shaped striations and reversed stoss‐and‐lee clasts are indicative of clasts rotating within this layer. As the till moves it erodes the bedrock and clasts within it. A combination of erosion by ice and till produces stoss‐and‐lee‐clasts and generates striations on flutes and embedded clasts, as well as eroding the bedrock into a continuum of smoothed, rounded and streamlined forms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we present a model for the growth of a maar-diatreme complex in a shallow marine environment. The Miocene-age Costa Giardini diatreme near Sortino, in the region of the Iblei Mountains of southern Sicily, has an outer tuff ring formed by the accumulation of debris flows and surge deposits during hydromagmatic eruptions. Vesicular lava clasts, accretionary lapilli and bombs in the older ejecta indicate that initial eruptions were of gas-rich magma. Abundant xenoliths in the upper, late-deposited beds of the ring suggest rapid magma ascent, and deepening of the eruptive vent is shown by the change in slope of the country rock. The interior of the diatreme contains nonbedded breccia composed of both volcanic and country rock clasts of variable size and amount. The occurrence of bedded hyaloclastite breccia in an isolated outcrop in the middle-lower part of the diatreme suggests subaqueous effusion at a low rate following the end of explosive activity. Intrusions of nonvesicular magma, forming plugs and dikes, occur on the western side of the diatreme, and at the margins, close to the contact between breccia deposits and country rock; they indicate involvement of volatile-poor magma, possibly during late stages of activity. We propose that initial hydromagmatic explosive activity occurred in a shallow marine environment and the ejecta created a rampart that isolated for a short time the inner crater from the surrounding marine environment. This allowed explosive activity to draw down the water table in the vicinity of the vent and caused deepening of the explosive center. A subsequent decrease in the effusion rate and cessation of explosive eruptions allowed the crater to refill with water, at which time the hyaloclastite was deposited. Emplacement of dikes and plugs occurred nonexplosively while the breccia sediment was mostly still soft and unconsolidated, locally forming peperites. The sheltered, low-energy lagoon filled with marine limestones mixed with volcaniclastic material eroded from the surrounding ramparts. Ultimately, lagoonal sediments accumulated in the crater until subsidence or erosion of the tuff ring caused a return to normal shallow marine conditions.  相似文献   

15.
Mass-transport sediments are generally difficult to date directly by existing methods. Conventional luminescence dating of sand is unsuitable because the short transport distances provide little opportunity for bleaching. However, larger clasts are often exposed to sunlight for prolonged periods before becoming entrained in mass-movements, and these clasts have the potential to be used for rock-surface luminescence dating. Mass-transport is a major component of landscape change in mountain regions; in the Baksan valley, Caucasus Mountains, high uplift rates and high precipitation create a rapidly eroding landscape where preservation of sediments is poor. The area is particularly prone to destructive debris flows, because of the large quantity of detrital material in the catchments. The debris-flow and hillslope sediment the Baksan valley are used here to test the applicability of rock-surface burial dating to mass-transport sediment. We find that colluvial clasts show a high degree of bleaching and give reproducible ages, with a large colluvial deposit dated to the early–mid Holocene. The bleaching of debris flow clasts is more variable – we suppose due to the more complex transport history of the clasts, with opportunities for lengthy storage in moraines or colluvium. Overall, the results are encouraging, and suggest that rock-surface methods can provide a useful approach to mass-transport dating in mountainous regions. However, improved targeting of samples and measurement efficiency is desirable for widespread application.  相似文献   

16.
Glaciokarst is a landscape which combines karst features and hydrology as well as inherited glacial features. It is a result of glaciation upon a karst geomorphological system. The relationship between glaciers and karst is rather poorly known and inadequately recognized. This research focuses on three distinct karst areas along the Adriatic coast in the southern Dinaric Alps that were affected by the Quaternary glaciations. An insight into specific glaciokarst processes and surface features was provided through the study of the areas of the Lov?en, Orjen and Vele? Mountains. A glaciokarst geomorphology is in general well preserved due to the prevailing vertically oriented chemical denudation following de‐glaciation and almost the entire absence of other surface processes. Typical glacial erosional features are combined by a variety of depressions which are the result of a karstic drainage of sub‐glacial waters. The majority of glacial deposits occur as extensive lateral‐terminal moraine complexes, which are often dissected by smaller breach‐lobe moraines on the external side of the ridge. Those moraine complexes are likely to be a product of several glacial events, which is supported by complex depositional structures. According to the type of glacial depositional features, the glaciers in the study areas were likely to have characteristics of moraine‐dammed glaciers. Due to vertical drainage ice‐marginal fluvial processes were unable to evacuate sediment. Fluvial transport between glacial and pro‐glacial systems in karst areas is inefficient. Nevertheless, some sediment from the glacier margin is washed away by the pro‐glacial streams, filling the karst depressions and forming piedmont‐type poljes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This research focused on the Aksu area in the central part of the southern Tianshan. Along the 60 km wide Aksu fold-and-thrust belt, active thrusts reach the surface and offset the youngest sediments. Our research was based on the geomorphologic study that examined the advance and retreat of glaciers cut by thrusts in the Tomur area in the north of Aksu. Our fieldwork revealed that two fault scarps were clearest across three different moraines that represent the maximum of advance of glaciers during three glacial periods along the Tailan River in the Tomur area. The measured heights of the fault scarps that cut the moraines, together with the moraines-inferred age, imply a shortening rate of 1.85 mm/a on the Aksu area since late Pleistocene. This rate, similar to that of the Korla area on its east side and of the Kaping area on its west side, but lower than that of the Kashgar area farther west and of the Manas area in the northern margin of the belt, implies that the distribution of shortening across the Tianshan changed markedly along the mountain.  相似文献   

18.
The evolution of glaciers and ice patches, as well as the equilibrium‐line altitude (ELA) since the Little Ice Age (LIA) maximum were investigated in the Julian Alps (south‐eastern European Alps) including ice masses that were previously unreported. Twenty‐three permanent firn and ice bodies have been recognized in the 1853 km2 of this alpine sector, covering a total area in 2012 of 0.385 km2, about one‐fifth of the area covered during the LIA (2.350 km2). These features were classified as very small glaciers, glacierets or ice patches, with major contribution to the mass balance from avalanches and wind‐blown snow. Localized snow accumulation is also enhanced in the area due to the irregular karst topography. The ice masses in the region are at the lowest elevations of any glaciers in the Alpine Chain, and are characterized by low dynamics. The ELAs of the two major LIA glaciers (Canin and Triglav) have been established at 2275 ± 10 m and 2486 ± 10 m, respectively, by considering the reconstructed area and digital elevation model (DEM) and using an accumulation area ratio (AAR) of 0.44 ± 0.07, typical of small cirque glaciers. Changes in the ELA and glaciers extension indicate a decoupling from climate. This is most evident in the smallest avalanche‐dominated ice bodies, which are currently controlled mainly by precipitation. The damming effect of moraine ridges and pronival ramparts at the snout of small ice bodies in the Julian Alps represents a further geomorphological control on the evolution of such ice masses, which seem to be resilient to recent climate warming instead of rapidly disappearing as should be expected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In southern Death Valley, pits similar in morphology to honeycomb weathering (herein referred to as corrosion pits) occur on the surfaces of cobbles that are associated with wave-produced benches. The pitted cobbles include a variety of igneous, metamorphic, and siliciclastic rocks; corrosion pits are rare to absent in limestones or dolomites. Pit morphology is controlled by cobble lithology. In massive rocks the pits are arcuate, elongate, and gently tapering; corrosion of laminated or foliated rocks has produced irregular, more jagged pits. The presence of desert varnish has strongly inhibited the corrosion process. The corroded cobbles are inferred to reflect both chemical and physical weathering of rocks along Pleistocene lacustrine strandlines. Corrosion took place through salt-weathering and/or heat-moisture expansion processes and through chemical dissolution of selected minerals as a result of splash-zone wetting and drying. The ancient lake waters may have had high pH and high total dissolved solids contents. The recognition of corroded cobbles may be important in the reconstruction of the position of ancient shorelines for certain types of alkaline lakes and in the reconstruction of their ancient chemistries.  相似文献   

20.
The fabrics of tills deposited by continental glaciers are usually assumed to reflect clast orientation during transportation and yet might only be imprinted during depositional processes. However, the striated surfaces of clasts must be acquired during transportation and by relating striation patterns to clast shape one can deduce the positions most frequently maintained by each group of clasts. Comparison of these orientations with the actual depositional fabrics of the same shape groups, demonstrates that dast orientations are maintained from transportation through deposition. Therefore subglacial transportation processes grade smoothly into those of deposition. The favoured interpretation is that bottom melting is the dominant mechanism leading to final deposition and that lodgement and smearing are likely restricted more to preliminary cycles of redeposition and re-erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号