首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 217 毫秒
1.
The quality of regional ocean reanalysis data for “the joining area of Asia and the Indian-Pacific Ocean (AIPO)” has been assessed from the perspective of ENSO-related ocean signals. The results derived from the AIPO reanalysis, including SST, sea surface height (SSH), and subsurface ocean temperature and currents, are compared with those of Hadley Center Sea Ice and Sea Surface Temperature (HadISST) data set and Simple Ocean Data Assimilation (SODA) reanalysis data. Both the spatial pattern and the characteristics of evolution of the ENSO-related ocean temperature anomalies are well reproduced by the AIPO reanalysis data. The physical processes proposed to explain the life cycle of ENSO, including the delayed oscillator mechanism, recharge-discharge mechanism, and the zonal advection feedback, are reasonably represented in this dataset. However, the westward Rossby wave signal in 1992 is not obvious in the AIPO data, and the magnitude of the heat content anomalies is different from that of the SODA data. The reason for the discrepancies may lie in the different models and methods for data assimilation and differences in wind stress forcing. The results demonstrate the high reliability of the AIPO reanalysis data in describing ENSO signals, implying its potential application value in ENSO-related studies.  相似文献   

2.
The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean(hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving,hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles(mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity–temperature–depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993–2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges.  相似文献   

3.
In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation Model for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA), and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18°N, 12.75°N, and 120°E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic comparisons, we found that each dataset had its own shortcomings and advantages in presenting the upper OHC in the SCS.  相似文献   

4.
With available high-resolution ocean surface wind vectors retrieved from the U.S. Naval Research Laboratorys WindSat on Coriolis, the impact of these data on genesis and forecasting of tropical storm Henri is examined using the non-hydrostatic, fifth-generation mesoscale model (MM5) of Pennsylvania State University-National Center for Atmospheric Research plus its newly released three-dimensional variational data assimilation (3DVAR) system. It is shown that the assimilation of the WindSat-retrieved ocean surface wind vectors in the 3DVAR system improves the model initialization fields by introducing a stronger vortex in the lower troposphere. As a result, the model reproduces the storm formation and track reasonably close to the observations. Compared to the experiment without the WindSat surface winds, the WindSat assimilation reduced an error between the model simulated track and observations of more than 80 km and also improved the storm intensity by nearly 2 hPa. It suggests that these data could provide early detection and prediction of tropical storms or hurricanes.  相似文献   

5.
This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment.  相似文献   

6.
The relationship between the radar reflectivity factor(Z) and the rainfall rate(R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z–R relationship is combined with an empirical qr–R relationship to obtain a new Z–qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational(3 DVar) data assimilation system of the Weather Research and Forecasting(WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3 DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3 DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical Z–R relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the Z–R relationships currently in use.  相似文献   

7.
A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service(NMDIS).It produces a dataset package called CORA (China ocean reanalysis).The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system(POMgcs).The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations.Data assimilation is a sequential three-dimensional variational(3D-Var) scheme implemented within a multigrid framework.Observations include satellite remote sensing sea surface temperature(SST),altimetry sea level anomaly(SLA),and temperature/salinity profiles.The reanalysis fields of sea surface height,temperature,salinity,and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature,salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges,temperature profiles,as well as the trajectories of Argo floats.Some case studies offer the opportunity to verify the evolution of certain local circulations.These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.  相似文献   

8.
The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center(BCC_GODAS2.0) has been run daily in a pre-operational mode.It spans the period 1990 to the present day.The goal of this paper is to introduce the main components and to evaluate BCC_GODAS2.0 for the user community.BCC_GODAS2.0 consists of an observational data preprocess,ocean data quality control system,a three-dimensional variational(3DVAR) data assimilation,and global ocean circulation model[Modular Ocean Model 4(MOM4)].MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction.Satellite altimetry data,SST,and in-situ temperature and salinity data are assimilated in real time.The monthly results from the BCC_GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011.The climatology of the mixed layer depth of BCC-GODAS2.0 is generally in agreement with that of World Ocean Atlas 2001.The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales.Performances in predicting variations in the SST using BCC_GODAS2.0 are evaluated.The standard deviation of the SST in BCC-GODAS2.0 agrees well with observations in the tropical Pacific.BCC-GODAS2.0 is able to capture the main features of E1 Nino Modoki I and Modoki Ⅱ,which have different impacts on rainfall in southern China.In addition,the relationships between the Indian Ocean and the two types of E1 Nino Modoki are also reproduced.  相似文献   

9.
A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation. The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was influenced more by ocean-atmosphere interaction and, thus, the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.  相似文献   

10.
Although radar observations capture storm structures with high spatiotemporal resolutions, they are limited within the storm region after the precipitation formed. Geostationary satellites data cover the gaps in the radar network prior to the formation of the precipitation for the storms and their environment. The study explores the effects of assimilating the water vapor channel radiances from Himawari-8 data with Weather Research and Forecasting model data assimilation system(WRFDA) for a severe storm case over north China. A fast cloud detection scheme for Advanced Himawari imager(AHI)radiance is enhanced in the framework of the WRFDA system initially in this study. The bias corrections, the cloud detection for the clear-sky AHI radiance, and the observation error modeling for cloudy radiance are conducted before the data assimilation. All AHI radiance observations are fully applied without any quality control for all-sky AHI radiance data assimilation. Results show that the simulated all-sky AHI radiance fits the observations better by using the cloud dependent observation error model, further improving the cloud heights. The all-sky AHI radiance assimilation adjusts all types of hydrometeor variables, especially cloud water and precipitation snow. It is proven that assimilating all-sky AHI data improves hydrometeor specifications when verified against the radar reflectivity. Consequently, the assimilation of AHI observations under the all-sky condition has an overall improved impact on both the precipitation locations and intensity compared to the experiment with only conventional and AHI clear-sky radiance data.  相似文献   

11.
本研究发展了一个全球海洋资料同化系统ZFL_GODAS。该系统是一个短期气候数值预测业务系统的子系统,为短期气候预测海气耦合模式提供全球海洋初始场。系统能够同化的观测资料包括卫星高度计资料、卫星海表温度(SST)资料,以及Argo、XBT、TAO等各种不同来源的现场温盐廓线资料。系统使用的海洋模式为中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室开发的气候系统海洋模式LICOM1.0,同化方案为集合最优插值(EnOI)方案。系统使用一个由海洋模式自由积分得到的静态样本来估计背景场误差协方差。这样的基于集合样本的背景场误差协方差具有多变量协变、各向异性的特征,且能反映海洋物理过程固有的空间尺度特征。针对EnOI同化程序的特点,开发了一套特色鲜明、负载均衡、高效的并行化同化程序。本文通过与不同类型观测资料的比较,对同化系统的性能进行了评估。通过比较海表温度和海面高度的年际变率,海表温度异常随时间的变化,SST、海面高度异常(SLA)以及次表层温盐预报产品的均方根误差,5年平均温度偏差廓线、平均盐度廓线、平均纬向流速廓线等发现:系统工作正常、同化效果较好;经过同化以后,各变量都更加接近观测,误差更小,与观测场的相关性更好,可以为短期气候预测系统提供较好的海洋初始场,也可以为物理海洋学的研究提供有效的再分析资料。  相似文献   

12.
The first version of a global ocean reanalysis over multiple decades (1979–2008) has been completed by the National Marine Data and Information Service within the China Ocean Reanalysis (CORA) project. The global ocean model employed is based upon the ocean general circulation model of the Massachusetts Institute of Technology. A sequential data assimilation scheme within the framework of 3D variational (3DVar) analysis, called multi-grid 3DVar, is implemented in 3D space for retrieving multiple-scale observational information. Assimilated oceanic observations include sea level anomalies (SLAs) from multi-altimeters, sea surface temperatures (SSTs) from remote sensing satellites, and in-situ temperature/salinity profiles. Evaluation showed that compared to the model simulation, the annual mean heat content of the global reanalysis is significantly approaching that of World Ocean Atlas 2009 (WOA09) data. The quality of the global temperature climatology was found to be comparable with the product of Simple Ocean Data Assimilation (SODA), and the major ENSO events were reconstructed. The global and Atlantic meridional overturning circulations showed some similarity as SODA, although significant differences were found to exist. The analysis of temperature and salinity in the current version has relatively larger errors at high latitudes and improvements are ongoing in an updated version. CORA was found to provide a simulation of the subsurface current in the equatorial Pacific with a correlation coefficient beyond about 0.6 compared with the Tropical Atmosphere Ocean (TAO) mooring data. The mean difference of SLAs between altimetry data and CORA was less than 0.1 m in most years.  相似文献   

13.
GTS的温盐资料在BCC_GODAS中的同化结果分析   总被引:2,自引:0,他引:2       下载免费PDF全文
分析了从GTS(全球无线通讯系统)获得的2002-2007年海洋温盐观测资料在国家气候中心第2代全球海洋资料同化系统(BCC_GODAS 2.0)中的同化结果。与SODA(简易海洋同化数据)资料的比较表明:GTS中的海洋温盐资料同化对模式温盐场的改进之处主要表现在混合层暖区的范围和中心强度、温跃层中温度槽脊的深度、温跃层附近的温度梯度以及盐度高、低值区的范围和中心强度等方面,同化后全球温盐场的均方根误差得到一定程度的降低。挑选位于不同海区的单点温盐廓线与ARGO(地转海洋学实时观测阵)观测作了进一步比较,结果表明:大多数情况下,同化后温盐廓线的均方根误差得到明显降低,模拟的温盐垂向分布特征也更为准确。与TAO(热带大气海洋观测网)资料的比较也同样表明:同化后的温盐场特征会得到一定程度改善。  相似文献   

14.
A simple idealized atmosphere–ocean climate model and an ensemble Kalman filter are used to explore different coupled ensemble data assimilation strategies. The model is a low-dimensional analogue of the North Atlantic climate system, involving interactions between large-scale atmospheric circulation and ocean states driven by the variability of the Atlantic meridional overturning circulation (MOC). Initialization of the MOC is assessed in a range of experiments, from the simplest configuration consisting of forcing the ocean with a known atmosphere to performing fully coupled ensemble data assimilation. “Daily” assimilation (that is, at the temporal frequency of the atmospheric observations) is contrasted with less frequent assimilation of time-averaged observations. Performance is also evaluated under scenarios in which ocean observations are limited to the upper ocean or are non-existent. Results show that forcing the idealized ocean model with atmospheric analyses is inefficient at recovering the slowly evolving MOC. On the other hand, daily assimilation rapidly leads to accurate MOC analyses, provided a comprehensive set of oceanic observations is available for assimilation. In the absence of sufficient observations in the ocean, the assimilation of time-averaged atmospheric observations proves to be more effective for MOC initialization, including the case where only atmospheric observations are available.  相似文献   

15.
A four-dimensional variational data assimilation (4DVar) system of the LASG/IAP Climate Ocean Model, version 1.0 (LICOM1.0), named LICOM-3DVM, has been developed using the three-dimensional variational data assimilation of mapped observation (3DVM), a 4DVar method newly proposed in the past two years. Two experiments with 12-year model integrations were designed to validate it. One is the assimilation run, called ASSM, which incorporated the analyzed weekly sea surface temperature (SST) fields from Reynolds and Smith (OISST) between 1990 and 2001 once a week by the LICOM-3DVM. The other is the control run without any assimilation, named CTL. ASSM shows that the simulated temperatures of the upper ocean (above 50 meters), especially the SST of equatorial Pacific, coincide with the Tropic Atmosphere Ocean (TAO) mooring data, the World Ocean Atlas 2001 (WOA01) data and the Met Office Hadley Centre's sea ice and sea surface temperature (HadISST) data. It decreased the cold bias existing in CTL in the eastern Pacific and produced a Nifio index that agrees with observation well. The validation results suggest that the LICOM-3DVM is able to effectively adjust the model results of the ocean temperature, although it's hard to correct the subsurface results and it even makes them worse in some areas due to the incorporation of only surface data. Future development of the LICOM-3DVM is to include subsurface in situ observations and satellite observations to further improve model simulations.  相似文献   

16.
To achieve a high-quality simulation of the surface wind field in the Chukchi/Beaufort Sea region, quick scatterometer (QuikSCAT) ocean surface winds were assimilated into the mesoscale Weather Research and Forecasting model by using its three-dimensional variational data assimilation system. The SeaWinds instrument on board the polar-orbiting QuikSCAT satellite is a specialized radar that measures ice-free ocean surface wind speed and direction at a horizontal resolution of 12.5 km. A total of eight assimilation case studies over two five-day periods, 1–5 October 2002 and 20–24 September 2004, were performed. The simulation results with and without the assimilation of QuikSCAT winds were then compared with QuikSCAT data available during the subsequent free-forecast period, coastal station observations, and North American Regional Reanalysis data. It was found that QuikSCAT winds are a potentially valuable resource for improving the simulation of ocean near-surface winds in the Chukchi/Beaufort Seas region. Specifically, the assimilation of QuikSCAT winds improved, (1) offshore surface winds as compared to unassimilated QuikSCAT winds, (2) sea-level pressure, planetary boundary-layer height, as well as surface heat fluxes, and (3) low-level wind fields and geopotential height. Verification against QuikSCAT data also demonstrated the temporal consistency and good quality of QuikSCAT observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号