首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1953 telescopic photograph of a flash on the Moon is the only unequivocal record of the rare crash of an asteroid-sized body onto the lunar surface. We estimate that this event would create an impact feature up to several km in size and that the diameter of the impacting body would be about 20 m. Such an event would cause regional devastation if it occurred on Earth. Although not detectable with ground- based telescopes, the lunar crater should be visible in space-based images of the Moon. A search of images from the Clementine mission reveals an ∼1.5-km high-albedo, blue, fresh-appearing crater with an associated ejecta blanket at the location of the flash. The identification of this crater offers an opportunity to investigate subsurface unaltered lunar soils.  相似文献   

2.
The thermal evolution of the Moon as it can be defined by the available data and theoretical calculations is discussed. A wide assortment of geological, geochemical and geophysical data constrain both the present-day temperatures and the thermal history of the lunar interior. On the basis of these data, the Moon is characterized as a differentiated body with a crust, a 1000-km-thick solid mantle (lithosphere) and an interior region (core) which may be partially molten. The presence of a crust indicates extensive melting and differentiation early in the lunar history. The ages of lunar samples define the chronology of igneous activity on the lunar surface. This covers a time span of about 1.5 billion yr, from the origin to about 3.16 billion yr ago. Most theoretical models require extensive melting early in the lunar history, and the outward differentiation of radioactive heat sources.Thermal history calculations, whether based on conductive or convective computation codes define relatively narrow bounds for the present day temperatures in the lunar mantle. In the inner region of the 700 km radius, the temperature limits are wider and are between about 100 and 1600°C at the center of the Moon. This central region could have a partially or totally molten core.The lunar heat flow values (about 30 ergs/cm2s) restrict the present day average uranium abundance to 60 ± 15 ppb (averaged for the whole Moon) with typical ratios of K/U = 2000 and Th/U = 3.5. This is consistent with an achondritic bulk composition for the Moon.The Moon, because of its smaller size, evolved rapidly as compared to the Earth and Mars. The lunar interior is cooling everywhere at the present and the Moon is tectonically inactive while Mars could be and the Earth is definitely active.  相似文献   

3.
The character of the lunar surface indicates that surface faulting has not been an important mechanism for the build-up of the lunar surface. If the radioactive content of the Moon is of the same order as that of chondritic meteorites, then the absence of major surface faults can be explained in a number of ways. A near-surface concentration of radioactivity will provide an equality of heat production and surface heat flow necessary for the maintenance of a constant lunar radius. Alternatively, the radioactivity could be deeply buried, with the radius still remaining constant over the past 2,000,000,000 years. Heat transported by mechanisms other than radiation and thermal conduction will also tend to keep the radius of the Moon at a constant value.

Even though the radius of the Moon remains constant, there is a major build-up of strain energy throughout the Moon. The rate is such that, on the average, something on the order of 1024–1025 ergs of distortional energy should be released per year throughout the Moon, provided the radioactivity is uniformly distributed. A near-surface concentration of the radioactivity might decrease this rate of energy release but certainly by no more than an order of magnitude. Under all circumstances it would appear that a Moon of chondritic composition would have strong Scismic activity.  相似文献   


4.
High-velocity comet and asteroid impacts onto the Moon are considered and the material masses ejected after such impacts at velocities above the second-cosmic velocity for the Moon (2.4 km/s) are calculated. Although the results depend on a projectile type and the velocity and angle of an impact, it has been demonstrated that, on average, the lunar mass decreases with time. The Moon has lost about 5 × 1018 kg, that is, about one-hundredth of a percent of its mass, over the last 3.8–3.9 billion years. The ejection of lunar meteorites and lunar dust, rich in 3He, is considered as well. The results of the study are compared to the results of earlier computations and data on lunar meteorites.  相似文献   

5.
Embryos of the Moon and the Earth may have formed as a result of contraction of a common parental rarefied condensation. The required angular momentum of this condensation could largely be acquired in a collision of two rarefied condensations producing the parental condensation. With the subsequent growth of embryos of the Moon and the Earth taken into account, the total mass of as-formed embryos needed to reach the current angular momentum of the Earth–Moon system could be below 0.01 of the Earth mass. For the low lunar iron abundance to be reproduced with the growth of originally iron-depleted embryos of the Moon and the Earth just by the accretion of planetesimals, the mass of the lunar embryo should have increased by a factor of 1.3 at the most. The maximum increase in the mass of the Earth embryo due to the accumulation of planetesimals in a gas-free medium is then threefold, and the current terrestrial iron abundance is not attained. If the embryos are assumed to have grown just by accumulating solid planetesimals (without the ejection of matter from the embryos), it is hard to reproduce the current lunar and terrestrial iron abundances at any initial abundance in the embryos. For the current lunar iron abundance to be reproduced, the amount of matter ejected from the Earth embryo and infalling onto the Moon embryo should have been an order of magnitude larger than the sum of the overall mass of planetesimals infalling directly on the Moon embryo and the initial mass of the Moon embryo, which had formed from the parental condensation, if the original embryo had the same iron abundance as the planetesimals. The greater part of matter incorporated into the Moon embryo could be ejected from the Earth in its multiple collisions with planetesimals (and smaller bodies).  相似文献   

6.
To improve our understanding of the formation and evolution of the Moon,one of the payloads onboard the Chang'e-3(CE-3) rover is Lunar Penetrating Radar(LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m.In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.  相似文献   

7.
Fundamental scientific questions concerning the internal structure and dynamics of the Moon, and their implications on the Earth-Moon System, are driving the deployment of a new broadband seismological network on the surface of the Moon. Informations about lunar seismicity and seismic subsurface models from the Apollo missions are used as a priori information in this study to optimise the geometry of future lunar seismic networks in order to best resolve the seismic interior structure of the Moon. Deep moonquake events and simulated meteoroid impacts are the assumed seismic sources. Synthetic P and S wave arrivals computed in a radial seismic model of the Moon are the assumed seismic data. The linearised estimates of resolution and covariance of radial seismic velocity perturbations can be computed for a particular seismic network geometry. The non-linear inverse problem relating the seismic station positions to the linearised estimates of covariance and resolution of radial seismic velocity perturbations is written and solved by the Neighbourhood Algorithm. This optimisation study favours near side seismic station positions at southern latitudes in order to constrain the deep mantle structure from deep moonquake data at large epicentral distances. The addition of a far side station allows to divide by two the size of the error bar on the seismic velocity model. The monitoring of lunar impact flashes from the Earth allows to improve the radial seismic model in the top of the mantle by adding much more meteor impact data at short epicentral distances due to the high accuracy of the space/time location of these seismic sources. Such meteor impact detections may be necessary to investigate the 3D structure of the lunar crust.  相似文献   

8.
S.J. Peale  P. Cassen 《Icarus》1978,36(2):245-269
The possible contributions of tidal heating to lunar thermal history are investigated. Analytic determinations of tidal dissipation in a homogeneous, incompressible Moon and in a two-layer Moon with a soft core and rigid mantle are given as a function of position in the Moon and as a function of Earth-Moon separation. The most recent information on the historical values of the lunar obliquity is employed, and we present results for the constant values of orbital eccentricity of e = 0.0 and e = 0.055. For a simplified orbital evolution and a dissipation factor Q = 100, the total increase in the mean lunar temperature for the homogeneous case does not exceed several tens of degrees. For the two-layer models the local dissipation may be enhanced over that of the homogeneous Moon by a factor of 5 for a core radius of 0.5 lunar radii and by a factor of 100 for a core radius of 0.95 lunar radii. The corresponding factors for the total dissipation are 3 and 15 for the two values of core radii, respectively. We conclude that tidal contributions to lunar thermal history are probably not important. But under special circumstances the enhanced dissipation in a two-layer Moon could have led to a spectacular thermal event.  相似文献   

9.
Possible models for the thermal evolution of the Moon are constrained by a wide assortment of lunar data. In this work, theoretical lunar temperature models are computed taking into account different initial conditions to represent possible accretion models and various abundances of heat sources to correspond to different compositions. Differentiation and convection are simulated in the numerical computational scheme.Models of the thermal evolution of the Moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion. Differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the Moon and are not resolvable with presently available data.If the Apollo 15 heat flow is a representative value, the average uranium concentration in the moon is 65±15 ppb. This is consistent with achondritic bulk composition (between howardites and eucrites) for the Moon.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

10.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

11.
A passive and multi-channel microwave sounder onboard the Chang’e-2orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang’e-1 orbiter, the Chang’e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data,which are helpful for further research. Since there is a close relationship between microwave brightness temperature data and some related properties of the lunar regolith,such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data acquired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with performing deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method(MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang’e-2 microwave data and the results are significant.  相似文献   

12.
The solar millimeter continuum between 1 and 20 mm is recalibrated using observations of the average lunar brightness temperature at the center of lunar disk and new Moon brightness temperatures. The solar data are placed on a common scale according to the average lunar brightness temperature distribution proposed by Linsky. A least-squares parabolic regression curve is proposed for the solar millimeter continuum. A small departure from this regression curve near 8 mm may indicate the existence of an absorption feature.Staff member, Laboratory Astrophysics Division, National Bureau of Standards.  相似文献   

13.
We developed a seismometer system for a hard landing “penetrator” probe in the course of the former Japanese LUNAR-A project to deploy new seismic stations on the Moon. The penetrator seismometer system (PSS) consists of two short-period sensor components, a two-axis gimbal mechanism for orientation, and measurement electronics. To carry out seismic observations on the Moon using the penetrator, the seismometer system has to function properly in a lunar environment after a hard landing (impact acceleration of about 8000 G), and requires a signal-to-noise ratio to detect lunar seismic events. We evaluated whether the PSS could satisfactorily observe seismic events on the Moon by investigating the frequency response, noise level, and response to ground motion of our instrument in a simulated lunar environment after a simulated impact test. Our results indicate that the newly developed seismometer system can function properly after impact and is sensitive enough to detect seismic events on the Moon. Using this PSS, new seismic data from the Moon can be obtained during future lunar missions.  相似文献   

14.
From the observations of the gravitational field and the figure of the Moon, it is known that its center of mass (briefly COM) does not coincide with the center of figure (COF), and the line “COF/COM” is not directed to the center of the Earth, but deviates from it to the South–East. Here we study the deviation of the lunar COM to the East from the mean direction to Earth.At first, we consider the optical libration of a satellite with synchronous rotation around the planet for an observer at a point on second (empty) orbit focus. It is found that the main axis of inertia of the satellite has asymmetric nonlinear oscillations with amplitude proportional to the square of the orbit eccentricity. Given this effect, a mechanism of tidal secular evolution of the Moon’s orbit is offered that explains up to \(20\%\) of the known displacement of the lunar COM to the East. It is concluded that from the alternative—evolution of the Moon’s orbit with a decrease or increase in eccentricity—only the scenario of evolution with a monotonous increase in orbit eccentricity agrees with the displacement of lunar COM to the East. The precise calculations available confirm that now the eccentricity of the lunar orbit is actually increasing and therefore in the past it was less than its modern value, \(e = 0.0549\).To fully explain the displacement of the Moon’s COM to the East was deduced a second mechanism, which is based on the reliable effect of tidal changes in the shape of the Moon. For this purpose the differential equation which governs the process of displacement of the Moon’s COM to the East with inevitable rounding off its form in the tidal increase process of the distance between the Earth and the Moon is derived. The second mechanism not only explains the Moon’s COM displacement to the East, but it also predicts that the elongation of the lunar figure in the early epoch was significant and could reach the value \(\varepsilon\approx0.31\). Applying the theory of tidal equilibrium figures, we can estimate how close to the Earth the Moon could have formed.  相似文献   

15.
In this paper we present quantitative results of observations of energetic neutral atoms (ENAs) originating from the lunar surface. These ENAs, which are hydrogen atoms, are the result of the solar wind protons being reflected from and neutralised at the surface of the Moon. These measurements were made with IBEX-Lo on NASA's IBEX satellite. From these measurements we derive the energy spectrum of the ENAs, their flux, and the lunar albedo for ENAs (i.e., the ratio of ENAs to the incoming solar wind protons). The energy spectra of the ENAs clearly show that their origin is directly from the solar wind via backscattering, and that they are not sputtered atoms. From several observation periods we derived an average global albedo of AH=0.09±0.05. From the observed energy spectra we derive a generic spectrum for unshielded bodies in the solar wind.  相似文献   

16.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

17.
The nature of the ancient magnetic field of the Moon, in which lunar rocks acquired their remanent magnetism, has emerged as an important potential source of evidence, if somewhat controversial, for a lunar core which at a period in the Moon's history was the source of the magnetic field. Many of the lunar rocks possess a stable, primary remanence (NRM) with characteristics consistent with and indicative of thermo-remanent magnetization, acquired when the rocks cooled in an ambient magnetic field. Also present are secondary components of magnetization, one type of which appears to have been acquired between collection on the Moon and reception in the laboratory and others which were apparently acquired on the Moon.An important question to be answered is whether meteorite impacts play any part in lunar magnetism, either in modifying pre-existing magnetizations or by imparting a shock remanent magnetism (SRM) in a transient magnetic field associated with the impact. With current knowledge, SRM, in either a global lunar magnetic field of a transient field, and TRM cannot be distinguished, and in the paper the secondary magnetization characteristic of lunar rocks are examined to investigate whether their nature favours the presence of a permanent lunar magnetic field or whether they are consistent with an origin as a transient field-generated SRM.Besides terrestrial processes of secondary magnetization, such as viscous, chemical and partial thermoremanent magnetization, possible processes peculiar to the Moon are discussed and their likely importance assessed in relation to lunar sample history. The nature of the secondary magnetizations appear to be best explained on the assumption that they are due to one or more of the processes that require an ambient lunar field, namely viscous, partial thermoremanent and shock magnetization. When associated with other types of evidence obtained from lunar magnetism studies, investigations of lunar sample remanent magnetism now favours the existence of an ancient lunar magnetic field.  相似文献   

18.
The Earth–Moon L1 libration point is proposed as a human gateway for space transportation system of the future. This paper studies indirect transfer using the perturbed stable manifold and lunar flyby to the Earth–Moon L1 libration point. Although traditional studies indicate that indirect transfer to the Earth–Moon L1 libration point does not save much fuel, this study shows that energy efficient indirect transfer using the perturbed stable manifold and lunar flyby could be constructed in an elegant way. The design process is given to construct indirect transfer to the Earth–Moon L1 libration point. Simulation results show that indirect transfer to the Earth–Moon L1 libration point saves about 420 m/s maneuver velocity compared to direct transfer, although the flight time is about 20 days longer.  相似文献   

19.
The identification of hydrogen in a range of lunar samples and the similarity of its abundance and isotopic composition with terrestrial values suggest that water could have been present in the Moon since its formation. To quantify the effect of water on early lunar differentiation, we present new analyses of a high‐pressure, high‐temperature experimental study designed to model the mineralogical and geochemical evolution of the solidification material equivalent to 700 km deep lunar magma oceans first reported in Lin et al. (2017a). We also performed additional experiments to better quantify water contents in the run products. Water contents in the melt phases in hydrous run products spanning a range of crystallization steps were quantified directly using a secondary ion mass spectrometry (SIMS). Results suggest that a significant but constant proportion (68 ± 5%) of the hydrogen originally added to the experiments was lost from the starting material independent of run conditions and run duration. The volume of plagioclase formed during our crystallization experiments can be combined with the measured water contents and the observed crustal thickness on the Moon to provide an updated lunar interior hygrometer. Our data suggest that at least 45–354 ppm H2O equivalent was present in the Moon at the time of crust formation. These estimates confirm the inference of Lin et al. (2017a) that the Moon was wet during its magma ocean stage, with corrected absolute water contents now comparable to estimates derived from the water content in a range of lunar samples.  相似文献   

20.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号