首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Reflectance spectra of 26 Martian areas (200–400 km in diameter) that were measured during the 1973 opposition are presented. They were measured through 25 narrow-band interference filters between 0.33 and 1.10 μm, using a photoelectric filter photometer at the Mauna Kea 230-cm telescope. There were many more bright and dark areas observed than during previous oppositions, and for the first time spectra were obtained of dust clouds and areas of mixed and intermediate albedo. The bright areas and dust clouds were all apparently composed of the same mineralogic unit. The dark area spectra differed substantially from the bright area and dust cloud spectra, and they showed major regional variations. The spectra of mixed and intermediate albedo areas had absorption bands seen in both bright and dark area spectra, and did not display any unique new features: thus they were apparently not compositionally unique, but rather were probably composed of mixtures of high albedo dust and dark area soils.  相似文献   

2.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

3.
During the period July 14–September 11, 1973, about 25 000 television pictures of Mars were obtained using a 0.7m telescope in ten spectral regions. A dust storm in moderate latitudes was recorded. It started before Mars passed perigee. During the observation period the atmosphere was gradually clearing.About 3000 pictures of Mars were taken using a 0.5m meniscus telescope during the period of Nobember 19, 1973–February 19, 1974. On November 19 the atmosphere was very hazy and heavy dust clouds were recorded. The second dust storm cleared during December through January.  相似文献   

4.
To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic volcanic sand, but the possibility of an impact melt origin of such materials also should be considered. In addition, our data suggest that high contents of feldspars or zeolites are not necessary to produce the transparency feature at 12.1 μm typical of martian dust spectra.  相似文献   

5.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

6.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

7.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   

8.
L.J. Martin 《Icarus》1974,23(1):108-115
The two largest Martian dust storms on photographic record occurred during the past two apparitions. The general characteristics of these events are compared using the hourly photography from the International Planetary Patrol. Dust storms are believed to be seasonal events on Mars, and therefore both storms had been predicted, but both turned out to be larger than expected, since they were each more extensive than the famous 1956 storm.The 1971 storm was much larger than the 1973 storm in both intensity and duration, although the 1973 storm had a more rapid initial expansion. Both storms began in the southern hemisphere but the 1973 storm began later (during summer, nearly three months beyond perihelion). The 1971 storm lasted approximately twice as long as the 1973 storm.Maps of the first nine days of both storms are presented to facilitate a comparison of their initial outbreaks and growth. Graphs of changes in contrast of albedo features during the 1973 storm are based on microdensitometer tracings of Planetary Patrol photographs.The frequency and regularity of storms of this size are uncertain because of the lack of comprehensive photographic observation during past apparitions. Identification and evaluation of such events in the future requires the continuation of well-coordinated worldwide observing efforts.  相似文献   

9.
John Caldwell 《Icarus》1977,32(2):190-209
Ultraviolet photometric and spectrophotometric observations of Mars and Saturn obtained by two Earth-orbiting satellites are combined in this report. High-resolution data from the S59 experiment aboard TD1A reveal no definite absorption features in the spectra of either planet. The absence of a prominent absorption in the Mars data near 2150 Å can be reconciled with the preliminary Viking measurement of NO only if that gas is preferentially concentrated at high Martian altitudes. Broadband photometry from OAO-2 shows that atmospheric dust on Mars during the great dust storm of 1971–1972 reduced the ultraviolet geometric albedo by a factor of ?3 at the height of the storm. This atmospheric energy deposition is probably an important mechanism in the storm dynamics. Diurnal variation in the ultraviolet brightness of Mars appears to be marginally detectable during the dust storm. A real brightness variation during a clear season is observed. The combined Saturn data from the two satellites strongly suggest that NH3 does not influence the ultraviolet spectrum of Saturn, but that some other absorber does. A candidate for such an absorber, H2S, is investigated. OAO-2 broadband photometry of Jupiter and of Saturn demonstrate that these planets have very similar albedos from 2100 to 2500 Å. This implies a common ultraviolet absorber on both planets, other than NH3.  相似文献   

10.
Attila Elteto  Owen B. Toon 《Icarus》2010,210(2):589-611
We present retrieved trends in dust optical depth, dust effective radius and surface temperature from our analysis of Mars Global Surveyor Thermal Emission Spectrometer daytime data from global dust storm 2001A, and describe their significance for the martian dust cycle. The dust optical depth becomes correlated with surface pressure during southern spring and summer in years both with and without a global dust storm, indicating that global dust mixing processes are important at those seasons. The correlation is low at other times of the year. We found that the observed decay of optical depths at the later stages of the dust storm match, to first-order, theoretical values of clearing from Stokes–Cunningham fallout of the dust. Zonally averaged effective radius is constant within standard deviation of results (between 1.2 and 2.0 μm, with a global mean for all seasons of 1.7 μm), at all latitudes and seasons except at southern latitudes of 35° and higher around equinoxes in both martian years, where it is larger than average (2–3 μm). The emergence and disappearance of these larger particles correlates with observations of polar cap edge storms at those latitudes. Northern latitude observations under similar conditions did not yield a similar trend of larger average effective radii during the equinoxes. We also report on a linear correlation between daytime surface temperature drop and rise in optical depth during the global dust storm. Global dust storm 2001A produced a significant optical depth and surface temperature change.  相似文献   

11.
Abstract— Reflectance spectra from 0.44 to 1.65 μm were obtained for three K asteroids. These objects all have spectra consistent with olivine‐dominated assemblages whose absorption bands have been suppressed by opaques. The two observed Eos family members (221 Eos and 653 Berenike) are spectral analogs to the CO3 chondrite Warrenton. The other observed object (599 Luisa) is a spectral analog for CV3 chondrite Mokoia. These asteroids are all located near meteorite‐supplying resonances with the Eos family cut by the 9:4 resonance and Luisa is found near the 5:2 resonance. However, K asteroids have been identified throughout the main belt so it is difficult to rule out other possible parent bodies for the CO3 and CV3 chondrites.  相似文献   

12.
Leonard J. Martin 《Icarus》1975,26(3):341-352
The 1956, 1971, and 1973 major dust storms on Mars affected the apparent contrast and extent of the northern polar hood. A survey of photography from seven apparitions indicates that this seasonal feature is consistently prominent and identifiable in the absence of major storms throughout half of the Martian year. During the 1956 dust storm, the hood was not seen for a period of over one month on Lowell photographs. The effects of a storm are also seen on 1971 International Planetary Patrol photographs; the hood quickly became faint and tenuous even in ultraviolet light, which normally shows it as very bright.Patrol photographs of 1973 cover the complete progression from a prominent and extensive hood before the storm, to an intermittent disappearance at the height of the storm, to the subsequent return of a normal hood as the storm died out. Hourly and daily mapping from these photographs indicates that the hood developed a southward protrusion during the first few days of the storm as it began its apparent recession. The hood was seen on at least one side of the planet on every day throughout the duration of the storm, although its normal extent and contrast were greatly reduced.  相似文献   

13.
Mariner 9 ultraviolet spectra of the 1971 Mars dust storm were studied to determine the cloud particle size distribution and complex index of refraction. The method consisted of matching the observed single particle scattering albedo and phase function with Mie scattering calculations for size distributions of spheres of homogeneous and isotropic material. Preliminary results indicate that the effective particle radius is 1 μm with an effective variance (a measure of distribution width) ?0.2. The real component of the index of refraction is ?1.8 at both 268 and 305 nm. For the imaginary index, a value of 0.02 was found at 268 nm and 0.01 at 305nm. These ultraviolet refractive indices are compatible with measurements at visible wavelengths which indicate that the real part of the refractive index is 1.75 with a negligible imaginary term. The rapid increase of refractive index and absorption coefficient with decreasing wavelength are indicative of an ultraviolet absorption band.An ultraviolet absorption band is not only diagnostic of the composition of the Mars material, but may have important implications for the development and evolution of life on Mars. A 30 μm layer of material that absorbs uv but transmits visible light can shield organisms from harmful irradiation while providing for photosynthesis.Comparison of the Mars ultraviolet refractive indices with laboratory measurements indicates that none of the terrestrial analog samples of limonite, basalt, andesite, or montmorrillonite have the required ultraviolet properties.  相似文献   

14.
Anthony Mallama   《Icarus》2007,192(2):404-416
A comprehensive set of magnitudes obtained between 1954 and 2006 are analyzed. The martian brightness and its variations are characterized empirically at UBVRI wavelengths. Geometrical factors including phase angle, orbital longitude and rotation angle are distinguished from geophysical factors including dust storms and changing albedo features. The phase function indicates a brightness surge near opposition at all wavelengths except possibly in the U band. The color indices reveal increased reddening with phase angle. No significant brightness difference between morning and evening hemisphere observations is indicated with the possible exception of the I band. There is no conclusive evidence for inter-annual brightness variation during the years from 1991 to 2006 when abundant photometry is available. Major dust storms caused brightness excesses that were strongest in the R band at an average of 0.15 mag more luminous than the empirical model for dust-free conditions. The storm of 2001 produced a rapid increase at the onset followed by a slower decline, while the 2003–2004 event show a more gradual increase. The return to normal brightness was linear in magnitude for both storms. Brightness excesses at longer wavelengths were about 0.20 to 0.25 mags at the peak of the 2001 storm. The observed geometric albedo of Mars is 0.059±0.001 in U, 0.089±0.001 in B, 0.170±0.002 in V, 0.289±0.003 in R, and 0.330±0.003 in I. The corresponding albedo values for all five colors exceed those recorded in the literature, with larger percentage increases at shorter wavelengths.  相似文献   

15.
A review of the available spectral geometric albedo measurements for Mars was presented earlier for the spectral region 0.3 to 1.1μ. A new observational study has greatly increased the store of data, especially for small Martian regions and for the infrared spectral region 1.0 to 2.5μ. Here we combine the new data with data both from the earlier review and, for the infrared spectral region, from the literature. We present a more complete picture of Martian spectral reflectivity properties than was available. This study should provide a more firm basis upon which models of Martian surface composition can be built. At visible wavelengths the Mars dark area Syrtis Major is red rather than green or grey in color; the bright area Arabia is even redder than Syrtis Major. Absorption bands, which differ between bright and dark areas, appear in the reflection curves. The 1μ absorption feature for dark areas is confirmed and more completely described. A previously unreported absorption band near 0.95μ for bright areas appears along with several absorption features in the infrared. The geometric albedo for Arabia reaches a maximum of about 0.43 at 1μ. The Bond albedo for this same area reaches a maximum of 60%. The bright area Arabia is occasionally three times brighter than the dark area Syrtis Major at red wavelengths. Published infrared reflection data available for Mars are not in complete agreement. Changes in brightness and color of Arabia are discussed which are not in agreement with traditional darkening wave theory.  相似文献   

16.
December 25th 2003 will see the Beagle 2 lander arrive at the surface of Mars in the Isidis region, allowing for the first time in situ measurements of ultraviolet (UV) flux directly from the surface of Mars through the use of a sensor designed as part of a miniaturised environmental package. The expected conditions the sensor will experience are studied here, and the detection signatures for phenomenon such as dust devils, H2O clouds ands near-surface fogs are presented. The beginning and end of mission surface fluxes show little variation, though the period towards mid-nominal mission does experience a maximum in total daily dose levels. Diurnal profiles are calculated highlighting the effects of increased scattering towards shorter wavelengths. A possible dust storm scenario is presented, and the effect upon component UV fluxes is shown to reverse the relative contributions of direct and diffuse components of the total UV flux. The presence of cloud formation above the landing site will be detectable though the observation of elevated diffuse/direct flux ratios. Near-surface morning fogs show a characteristic ‘dip’ in the morning profile when compared to clear mornings, allowing their detection on cloud-free mornings through post-event analysis of long term data. Predicted Phobos eclipses are investigated at each of the sensor centre wavelengths, and show greatest reduction in relative intensity at short wavelengths. Observations of near-miss eclipse events will also be possible, through monitoring of the diffuse UV flux. Dust devil encounters are shown to create a double minima lightcurve, with the depth of the minima dependent upon the total dust loading of the vortex. The effects of these changing conditions on DNA-weighted irradiances are investigated. Possible dust storms provide the greatest increase in biological protection, whereas expected cloud formations at the Beagle 2 site are found to offer negligible protection. Within just five minutes of landing >95% of any Bacillus subtilis-like bacteria present on the surface of the craft will have lost viability.  相似文献   

17.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   

18.
W.M. Grundy  B. Schmitt  E. Quirico 《Icarus》2002,155(2):486-496
New infrared absorption coefficient spectra of pure methane ice I were measured at temperatures between 30 and 90 K, over wavelengths from 0.7 to 5 μm, along with spectra of methane ice II at 20 K and liquid methane at 93 K. The spectra were derived from transmission measurements through monocrystalline samples grown in a series of closed cells having interior dimensions ranging from 100 μm to 1 cm. The thicker samples permitted measurement of extremely weak absorption bands, with absorption coefficients as small as 0.003 cm−1. We report 14 new absorption bands, which we tentatively assign to specific vibrational transitions. Two of the new bands are attributed to CH3D. Measurements of the weaker CH4 bands are particularly needed for interpreting spectral observations of Pluto and Triton, where a number of weak CH4-ice absorption bands have been observed. The data presented in this paper complement studies of spectral transmission by thin films of methane ice, which are most suitable for measuring the stronger absorption bands. Temperature-dependent spectral features revealed by the new data offer the opportunity to determine CH4-ice temperatures remotely, via near-infrared reflectance spectroscopy. This approach could prove particularly valuable for future spacecraft exploration of Pluto.  相似文献   

19.
R.M. Batson  J.L. Inge 《Icarus》1976,27(4):531-536
A map of “albedo” boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm.  相似文献   

20.
E.P. Turtle  J.E. Perry  A.S. McEwen 《Icarus》2011,212(2):957-959
Recent observations by Cassini’s Imaging Science Subsystem reveal that part of the shoreline of Titan’s Ontario Lacus has retreated by several kilometers and may indicate that the dark area that appeared at Arrakis Planitia (80°S, 120°W) in late 2004 has subsequently faded. These changes provide constraints on aspects of Titan’s methane cycle, as well as on the properties of Titan’s surface materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号