首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Wallace  Gerald R. Smith 《Icarus》1979,38(3):342-348
The results of inversions of infrared spectral measurements indicate that there exist temperature structures in the region of the temperature minimum at ~0.1 bar which are significantly different from radiative models. We demosntrate that this difference can be accounted for in terms of errors in the retrieved temperature structures caused by the lack of observations which adequately define the thermal structure in the lower stratosphere.  相似文献   

2.
R.D. Cess  S.C. Chen 《Icarus》1975,26(4):444-450
Ethane and acetylene, both of which possess more efficient emission bands than methane, have been incorporated into a thermal structure model for the atmosphere of Jupiter. Choosing for illustrative purposes the mixing ratios [C2H6][H2] = 10?5 and [C2H2][H2] = 5 × 10?7, it is found that these hydrocarbon gases lower the atmospheric temperature within the thermal inversion region by as much as 20 K, subsequently reducing the emission intensity of the 7.7 μm CH4 band below the observed result. It is qualitatively shown, however, that this cooling by C2H6 and C2H2 could be compensated by aerosol heating resulting from a uniformily mixed aerosol which absorbs 15% of the incident solar radiation. Such aerosol heating has been suggested by uv albedo observations.  相似文献   

3.
An equation of heat transport in the Jovian magnetosphere is formulated and solved in the L range between 2 and 7. Sources of thermal energy include the heating associated with inward radial diffusion and a hypothetical heat supply originating from Io's dynamo action. The principal sink of the thermal energy is charge exchange in Io's hydrogen torus. In order to explain the density and temperature profile reported by Frank et al. (1976), the presence of the heat source at Io is essential and the density of the torus hydrogen has to be considerably lower than the value inferred from Lα observations by Carlson and Judge (1975). Radial diffusion represents the principal heating mechanism for plasma at very low L values.  相似文献   

4.
5.
We examine the effects of NH3 ice particle clouds in the atmosphere of Jupiter on outgoing thermal radiances. The cloud models are characterized by a number density at the cloud base, by the ratio of the scale height of the vertical distribution of particles (Hp) to the gas scale height (Hg), and by an effective particle radius. NH3 ice particle-scattering properties are scaled from laboratory measurements. The number density for the various particle radius and scale height models is inferred from the observed disk average radiance at 246 cm?1, and preliminary lower limits on particle sizes are inferred from the lack of apparent NH3 absorption features in the observed spectral radiances as well as the observed minimum flux near 2100 cm?1. We find lower limits on the particle size of 3 μm if Hp/Hg = 0.15, or 10μmif Hp/Hg = 0.50 or 0.05. NH3 ice particles are relatively dark near the far-infrared and 8.5-μm atmospheric windows, and the outgoing thermal radiances are not very sensitive to various assumptions about the particle-scattering function as opposed to radiances at 5 μm, where particles are relatively brighter. We examined observations in these three different spectral window regions which provide, in principle, complementary constraints on cloud parameters. Characterization of the cloud scale height is difficult, but a promising approach is the examination of radiances and their center-to-limb variation in spectral regions where there is significant opacity provided by gases of known vertical distribution. A blackbody cloud top model can reduce systematic errors due to clouds in temperature sounding to the level of 1K or less. The NH3 clouds provide a substantial influence on the internal infrared flux field near the 600-mbar level.  相似文献   

6.
For Jupiter, an overall density model of the form= 0(1–x n ), withn1/3 and , is consistent with information presently at hand; for Saturn, however, such a density law would lead to unacceptably high densities in the vicinity of the centre. The limiting cases of the previous law are shown to ben=+, corresponding to a homogeneous sphere, andn=–3, corresponding to a particular central particle model, investigated by a number of astronomers over the last hundred years. Forn0, the central density becomes +. Another possible representation, valid both for Jupiter and Saturn, is the density law= 0(1–x) m ), with in the case of Jupiter, and in the case of Saturn. Graber's density law based on a maximum entropy principle leads to unacceptably high surface densities, both for Jupiter and Saturn. Finally, the paper investigates the problems involved in fitting two-layered parametrically simple density laws to theoretically derived much more elaborate models of the Jovian planets.  相似文献   

7.
By observing the transit of various cloud features across the Jovian disk, Terrile and Westphal (1977) have constructed limb-darkening curves for three regions in the 4.6 to 5.1 μm band. Several models currently employed in describing the radiative or dynamical properties of planetary atmospheres are here examined to understand their implications for limb-darkening. The statistical problem of fitting these models to the observed data is reviewed and methods for applying multiple regression analysis are discussed. Analysis of variance techniques are introduced to test the viability of a given physical process as a cause of the observed limb-darkening. The intermediate flux region of the North Equatorial Belt appears to be in only modest departure from radiative equilibrium. The limb-darkening curve for the South Temperate Belt is rich in structure and cannot be satisfactorily ascribed to any single physical mechanism; a combination of several, as yet unidentified, processes is likely involved. The hottest areas of the North and South Equatorial Belts exhibit limb-darkening curves that are typical of atmospheres in convective equilibrium. In this case, we derive a measure of the departure of the lapse rate from the dry adiabatic value (η?1.68), which furnishes strong evidence for a phase transition at unit optical depth in the NEB and SEB. Although the system NH3H2S cannot be entirely ruled out, the freezing of an aqueous ammonia solution is shown to be consistent with the parameter fit and solar abundance data, while being in close agreement with Lewis' (1969a) cloud models.  相似文献   

8.
Images from three filters of the Voyager 1 wide-angle camera were used to measure the continuum reflectivity and spectral gradient near 6000 Å and the 6190-Å band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark “barge” features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition, probably not elemental sulfur. Methane absorption was shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Some small-scale features, unresolvable at ground-based resolution, show significant enhancement in methane absorption. Any enhancement in methane absorption is conspicuously absent in both hot spot regions with 5-μm brightness temperature 255°K. Methane absorption and 5-μm emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneously maps of 5-μm brightness temperature were quantitatively compared to realistic cloud structure models which include multiple scattering at 5 μm as well as in the visible. A curve in parameter space defines the solution to any observed quantity, ranging from a shallow atmosphere and thin NH3 cloud to a deep atmosphere with a thick ammonia cloud. Without additional constraints, such as center-to-limb information, it is impossible to specify the NH3 cloud optical depth and pressure of a deeper cloud top independently. Variability in H2 quadrupole lines was also investigated and it was found that the constancy of the 4-0 S(1)-line equivalent width is consistent with the constancy of the methane 6190-Å band equivalent width at ground-based resolution, but the much greater variability of the 3-0 S(1) line is inconsistent with either the methane band or 4-0 S(1) line. In hot spot regions the 255°K brightness temperature requires a cloud optical depth of about 2 or less at 5 μm in the NH3 cloud layer. To be consistent with the observed 6190-Å methane absorption in hot spot regions, the NH3 cloud optical depth in the visible is about 7.5, implying that aerosols in hot spot regions have effective radii near 1 μm or less.  相似文献   

9.
10.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

11.
The solar extreme ultraviolet (e.u.v.) flux and solar ultraviolet (u.v.) flux in the Schumann-Runge continuum region have been measured by spectrometers on board the Atmosphere Explorer satellites from about 1974 to 1981. The solar flux spectra measured on 23 April 1974 (a day the Atmosphere Explorer satellite reference spectrum was obtained), 13–28 July 1976 (a period of spotless conditions near solar cycle minimum), and 19 February 1979 (a day near solar cycle maximum) are used to examine the global mean temperature structure of the thermosphere above 120 km. The results show that for solar cycle minimum the calculated global mean exospheric temperature is in agreement with empirical model predictions, indicating that the energy absorbed by the thermosphere is balanced by downward molecular thermal conduction. For solar cycle maximum the energy absorbed by the thermosphere is not balanced by downward thermal conduction but agreement between the calculated and observed temperature is obtained with the inclusion of 5.3μm radiational cooling by nitric oxide. Model calculations of the minor neutral constituents in the thermosphere show that about three times more nitric oxide is produced during solar cycle maximum than solar cycle minimum conditions. The results suggest that nitric oxide cooling is small during solar cycle minimum, because of low nitric oxide densities and low thermospheric temperatures, but it becomes significantly larger during solar cycle maximum, when nitric oxide densities and thermospheric temperatures are larger.23 April 1974 was a moderately disturbed day and the results of the global mean temperature calculation indicate that it is necessary to consider a high latitude heat source associated with the geomagnetic activity to obtain agreement between the calculated and observed global mean temperature structure.  相似文献   

12.
A variational technique is used to compute synthetic spectra for models of cloudy Jovian planetary atmospheres which incorporate abrupt changes in their vertical structure. The dependence of the center-to-limb variations in equivalent widths of molecular bands upon the properties of the various scattering layers in the model is examined. A range of theoretical models are delineated on the basis of their ability to reproduce observational results for the specific case of Jupiter.  相似文献   

13.
Mid-infrared 7-20 μm imaging of Jupiter from ESO’s Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter’s South Equatorial Belt (SEB) during the ‘fade’ (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free ‘brown barges’ (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process.The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air.  相似文献   

14.
We describe a new model of the chromosphere based on Lyman-continuum observations by Harvard spectrometers aboard the satellites OSO 4 and OSO 6. The model assumes (a) that a random distribution of optically thick inhomogeneities overlies a plane-parallel homogeneous atmosphere, and (b) that the Lyman continuum in the chromosphere is optically thick and the only significant opacity source between 600 and 912 Å.The temperature, gas pressure, electron pressure, particle densities, and b 1 (the hydrogen ground-state departure coefficient) are calculated as a function of height in the chromosphere.The model reproduces the observed quiet-region intensities in the Lyman continuum. The inhomogeneous structures, which we believe to be spicules, are inferred to be optically thick in the Lyman continuum and to have a source function below that of the mean chromosphere. If they are also optically thick in the free-free (millimeter) continuum and cooler than about 5000K, they could produce the observed limb darkening at 1 and 3 mm. Such low temperatures are at odds with current spicule models, but could exist in the cores of spicules.The Lyman-continuum emission shortward of 750 Å shows an excess emission over that predicted by the above model. This is found to be consistent with the existence of a temperature plateau with T 22000K in the very high chromosphere.  相似文献   

15.
The continuity, momentum and energy hydrodynamic equations for an H+-O+ topside ionosphere have been solved self-consistently for steady state conditions similar to those found outside the plasmasphere. Results are given for undisturbed and trough conditions with a range of H+ outflow velocities yielding subsonic and supersonic flow. In the formulation of the equations, account was taken of the velocity dependence of ion-neutral, ion-ion and ion-electron collision frequencies. In addition, parallel stress and the nonlinear acceleration term were retained in the H+ momentum equation. Results computed from this model show that, as a result of Joule (frictional) heating, the H+ temperature rises with increasing outflow velocity in the subsonic flow regime, reaching a maximum value of about 4000 K. For supersonic flow other terms in the H+ momentum equation become important and alter the H+ velocity profile such that convection becomes a heat sink in the 1000–1500 km altitude range. This, together with the reduced Joule heating resulting from the high-speed velocity dependence of the H+ collision frequencies, results in a decrease in the H+ temperature as the outflow velocity increases. However, for all outward flows the H+ temperature remains substantially greater than the O+ temperature. With identical upper boundary velocities, the H+ flow velocity is higher at low altitudes for trough conditions compared with non-trough conditions, but the H+ temperature in the trough is lower. The form of the H+ density profiles for supersonic flow does not in general differ greatly from those obtained with wholly subsonic flow conditions.  相似文献   

16.
《Icarus》1987,72(3):635-646
The occultation of a bright (K∼6) infrared star by Neptune revealed a central flash at two stations and provided accurate measurements of the limb position at these and several additional stations. We have fitted this data ensemble with a general model of an oblate atmosphere to deduce the oblateness e and equatorial radius a0 of Neptune at the 1-μbar pressure level, and the position angle pn of the projected spin axis. The results are e=0.0209±0.0014, a0=25269±10 km, pn=20.1°±1°. Parameters derived from fitting to the limb data alone are in excellent agreement with parameters derived from fitting to central flash data alone (E. Lellouch, W.B. Hubbard, B. Sicardy, F. Vilas, and P. Bouchet, 1986, Nature 324, 227–231), and the principal remaining source of uncertainty appears to be the Neptune-centered declination of the Earth at the time of occultation. As an alternative to the methane absorption model proposed by Lellouch et al., we explain an observed reduction in the central flash intensity by a decrease in temperature from 150 to 135°K as the pressure rises from 1 to 400 μbar. Implications of the oblateness results for Neptune interior models are briefly discussed.  相似文献   

17.
A. Tokunaga  R.D. Cess 《Icarus》1977,32(3):321-327
A model for the temperature inversion within the atmosphere of Saturn is proposed and is shown to be consistent with photometric data in the 17- to 25-μm region. The proposed model incorporates solar heating by some “aerosol,” with the aerosol heating per unit mass of the atmosphere being uniformly distributed throughout that portion of the atmosphere overlying the upper cloud deck. For a methane-to-hydrogen mixing ratio of 7 × 10?4, the model results suggest that 20% of the incident solar radiation is absorbed by the aerosol, while this is reduced to 16% for an enhanced methane mixing ratio of 2.1 × 10?3.  相似文献   

18.
19.
L. Wallace 《Icarus》1975,25(4):538-544
Uranus has an effective temperature close to the solar equilibrium value and undoubtedly a thermal inversion of at least 140 K at a pressure of ~3 dyncm?2. With the inversion and the thermal opacity provided by a HeH2 mixture in a ratio close to solar abundance, acceptable agreement can be achieved with the available infrared observations. The cause of the inversion is, however, uncertain. The use of the HeH2 opacity for Uranus is justified by the excellent agreement of the frequency variation of that opacity with the thermal spectrum of Jupiter.  相似文献   

20.
Functional space inversions (FSI) of precise temperature logs from wells located in low conductivity clastic sediments of the western Canadian Sedimentary Basin show evidence of extensive, recent ground surface temperature (GST) warming. Simultaneous inversion of the data, as well as averaging of the individual site reconstructions, indicate that this high magnitude of GST warming exceeds over two times that of globally averaged GST's [Science 282 (1998) 279] and is significantly higher than that of surface temperature histories based on instrumental records and tree ring reconstruction in northern and western Canada [Holocene 7 (1997) 375; Science 278 (1997) 1251; Clim. Res. 12 (1999) 39].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号