首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using the Mariner 5 temperature profile and a homogeneous cloud model, and assuming that CO2 and cloud particles are the only opacity sources, the wavelength dependence of the Venus cloud opacity is infrared from the infrared spectrum of the planet between 450 and 1250 cm?1. Justification for applying the homogeneous cloud model is found in the fact that numerous polarization and infrared data are mutually consistent within the framework of such a model; on the other hand, dense cloud models are not satisfactory.Volume extinction coefficients varying from 0.5 × 10?5 to 1.5 × 10?5 cm?1, depending on the wavelength, are determined at the tropopause level of 6110 km. By using all available data, a cloud mass mixing ratio of approximately 5 × 10?6 and a particle concentration of about 900 particles cm?3 at this level are also inferred. The derived cloud opacity compares favorably with that expected for a haze of droplets of a 75% aqueous solution of sulfuric acid.  相似文献   

2.
A.T. Young 《Icarus》1973,18(4):564-582
Water solutions of sulfuric acid, containing about 75% H2SO4 by weight, have a refractive index within 0.01 of the values deduced from polarimetric observations of the Venus clouds. These solutions remain liquid at the cloud temperature, thus explaining the spherical shape of the cloud particles (droplets). The equilibrium vapor pressure of water above such solutions is 0.01 that of liquid water or ice, which accounts for the observed dryness of the cloud region. Furthermore, H2SO4 solutions of such concentration have spectra very similar to Venus in the 8–13 μm region; in particular, they explain the 11.2 μm band. Cold sulfuric acid solutions also seem consistent with Venus spectra in the 3–4 μm region. The amount of acid required to make the visible clouds is quite small, and is consistent with both the cosmic abundance of sulfur and the degree of out-gassing of the planet indicated by known atmospheric constituents. Sulfuric acid occurs naturally in volcanic gases, along with known constituents of the Venus atmosphere such as CO2, HCl, and HF ; it is produced at high temperature by reactions between these gases and common sulfate rocks. The great stability and low vapor pressure of H2SO4 and its water solutions explain the lack of other sulfur compounds in the atmosphere of Venus—a lack that is otherwise puzzling.Sulfuric acid precipitation may explain some peculiarities in Venera and Mariner data. Because sulfuric acid solutions are in good agreement with the Venus data, and because no other material that has been proposed is even consistent with the polarimetric and spectroscopic data, H2SO4 must be considered the most probable constituent of the Venus clouds.  相似文献   

3.
A. Bar-nun 《Icarus》1980,42(3):338-342
The effects of the newly discovered thunderstorms on Venus upon the nitrogen and carbon species in its atmosphere were calculated. An Earth-like lightning frequency of 100 sec?1 was used for Venus, in accord with recent optical measurements by Pioneer-Venus (W. J. Borucki, J. W. Dyer, G. Z. Thomas, J. C. Jordon, and D. A. Comstock, submitted for publication). The rate of NO production by thunder shock waves, 2.5 × 1011 g year?1, is about an order of magnitude smaller than on the Earth. But on Venus, in the absence of precipitation, which is the major removal mechanism of odd nitrogen from the Earth's atmosphere, the mixing ratios of odd nitrogen species might be considerably higher. The global CO production is governed by CO2 photolysis rather than by CO2 pyrolysis by lightning. However, thunderstorms produce about 2.5 × 1011 g year?1 of CO in the cloud layer, far from the high altitude CO2 photolysis region.  相似文献   

4.
The large backscattering cross section of the particles composing the upper clouds on Venus suggests that a small quantity of high refractive index material is present in the clouds. We propose that this material is elemental sulfur and that sulfur also accounts for the absorption of uv-visible radiation at wavelengths outside of the SO2 absorption bands. A physical-chemical model of the clouds shows that sulfur, with a mass comparable to that of the observed Mode 1 particles, can be produced in oxygen-poor regions of the upper clouds and in rising air columns. Sulfur production from SO2 can be rapid, which explains the observed correlation between SO2 and the uv absorber. The sulfur is properly located to be the uv absorber uv absorber since its calculated concentration rapidly increases with depth in the upper clouds, but it is largely absent in the middle and lower clouds. Sulfur nucleation provides a means of generating the observed bimodal particle size distribution in the upper clouds. Chemical modeling shows that the sulfur vapor is rich in short-chain allotropes such as S3 and S4. These allotropes have absorption bands centered near 4000 and 5300 Å, respectively. We suggest that the sulfur particles on Venus are largely composed of S8, but also contain a few percent of S3 and S4. Such particles could account for the wavelength dependence of the albedo of Venus and for the solar energy deposition profile in the clouds. These allotropes are metastable and relax to S8 over periods of hours to days, providing a simple explanation for the relatively short lifetime of the uv absorber.  相似文献   

5.
In March 1979, the spectrum of Venus was recorded in the far infrared from the G.P. Kuiper Airborne Observatory when the planet subtended a phase angle of 62°. The brightness temperature was observed to be 275°K near 110 cm?1, dropping to 230°K near 270 cm?1. Radiance calculations, using temperature and cloud structure formation from the Pioneer Venus mission and including gaseous absorption by the collision-induced dipole of CO2, yield results consistently brighter than the observations. Supplementing the spectral data, Pioneer Venus OIR data at similar phase angles provide the constraint that any additional infrared opacity must be contained in the upper cloud, H2SO4 to the Pioneer-measured upper cloud structure serves to reconcile the model spectrum and the observations, but cloud microphysics strongly indicates that such a high particle density haze (N ? 1.6 × 107cm?3) is implausible. The atmospheric environment is reviewed with regard to the far infrared opacity and possible particle distribution modifications are discussed. We conclude that the most likely possibility for supplementing the far-infrared opacity is a population of large particles (r ? 1 μm) in the upper cloud with number densities less than 1 particle cm?3 which has remained undetected by in situ measurements.  相似文献   

6.
J.T. Trauger  J.I. Lunine 《Icarus》1983,55(2):272-281
The abundances of molecular oxygen in the atmospheres of Venus and Mars are sensitive to fundamental photochemical processes. A new upper limit is reported for the molecular oxygen mixing ratio (O2/CO2 < × 10?7) in the integrated column above the visible cloud tops of Venus, based on spectroscopic observations carried out in early spring, 1982. During the same observing period, an O2 column abundance of 8.5 cm-am for the atmosphere of Mars was measured, slightly below the O2 abundances measured a decade earlier.  相似文献   

7.
From estimates of drying effect in the cloud layer, data of the Venera 14 X-ray fluorescent spectroscopy, and evaluation of photochemical production of sulfuric acid, it follows that sulfuric acid and/or products of its further conversion should constitute not only the Mode 2 particles but most of the Mode 3 particles as well. The eddy mixing coefficient equals 2 × 104 cm2 s?1 in the cloud layer. The presence of ferric chloride in the cloud layer is indicated by the Venus u.v. absorption spectrum in the range of 3200–5000 Å, by the Venera 12 X-ray fluorescent spectrum, by the coincidence of the calculated FeCl3 condensate density profile and that of the Mode 1 in the middle and lower cloud layer, as well as by the upward flux of FeCl3 from the middle cloud layer which provides the necessary concentration of FeCl3 in H2SO4 solution. FeCl3 as the second absorber explains the localization of absorption in the upper cloud layer due to the FeCl3 conversion to ferric sulfate near the boundary between the upper and middle cloud layers. Other possible absorbers such as sulfur, ammonium pyrosulfite, nitrosylsulfuric acid, etc. are discussed.  相似文献   

8.
Polarimetry is able to show direct evidence for compositional differences in the Venus clouds. We present observations (collected during 212 Venus years by the Pioneer Venus Orbiter) of the polarization in four colors of the bright and dark ultraviolet features. We find that the polarization is significantly different between the bright and dark areas. The data show that the “null” model of L. W. Esposito (1980, J. Geophys. Res.85, 8151–8157) and the “overlying haze” model of J. B. Pollack et al. (1980, J. Geophys. Res.85, 8223–8231) are insufficient. Exact calculations of the polarization, including multiple scattering and vertical inhomogeneity near the Venus cloud tops, are able to match the observations. Our results give a straightforward interpretation of the polarization differences in terms of known constituents of the Venus atmosphere. The submicron haze and uv absorbers are anticorrelated: for haze properties as given by K. Kawabata et al. (1980, J. Geophys. Res.85, 8129–8140) the excess haze depth at 9350 Å over the bright regions is Δτh = 0.03 ± 0.02. The cloud top is slightly lower in the dark features: the extra optical depth at 2700 Å in Rayleigh scattering above the darker areas is ΔτR = 0.010 ± 0.005. This corresponds to a height difference of 1.2 ± 0.6 km at the cloud tops. The calculated polarization which matches our data also explains the relative polarization of bright and dark features observed by Mariner 10. The observed differential polarization cannot be explained by differential distribution of haze, if the haze aerosols have an effective size of 0.49 μm, as determined by K. Kawabata et al. (1982, submitted) for the aerosols overlying the Venus equator. We propose two models for the uv contrasts consistent with our results. In a physical model, the dark uv regions are locations of vertical convergence and horizontal divergence. In a chemical model, we propose that the photochemistry is limited by local variations in water vapor and molecular oxygen. The portions of the atmosphere where these constituents are depleted at the cloud tops are the dark uv features. Strong support for this chemical explanation is the observation that the number of sulfur atoms above the cloud tops is equal over both the bright and dark areas. The mass budget of sulfur at these altitudes is balanced between excess sulfuric acid haze over the bright regions and excess SO2 in the dark regions.  相似文献   

9.
10.
We have measured the shape and absolute value of Venus' reflectivity spectrum in the 1.2-to 4.0-μm spectral region with a circular variable filter wheel spectrometer having a spectral resolution of 1.5%. The instrument package was mounted on the 91-cm telescope of NASA Ames Kuiper Airborne Observatory, and the measurements were obtained at an altitude of about 41,000 feet, when Venus had a phase angle of 86°. Comparing these spectra with synthetic spectra generated with a multiple-scattering computer code, we infer a number of properties of the Venus clouds. We obtain strong confirmatory evidence that the clouds are made of a water solution of sulfuric acid in their top unit optical depth and find that the clouds are made of this material down to an optical depth of at least 25. In addition, we determine that the acid concentration is 84 ± 2% H2SO4 by weight in the top unit optical depth, that the total optical depth of the clouds is 37.5 ± 12.5, and that the cross-sectional weighted mean particle radius lies between 0.5 and 1.4 μm in the top unit optical depth of the clouds. These results have been combined with a recent determination of the location of the clouds' bottom boundary [Marov et al., Cosmic Res.14, 637–642 (1976)] to infer additional properties about Venus' atmosphere. We find that the average volume mixing ratio of H2SO4 and H2O contained in the cloud material both equal approximately 2× 10?6. Employing vapor pressure arguments, we show that the acid concentration equals 84 ± 6% at the cloud bottom and that the water vapor mixing ratio beneath the clouds lies between 6 × 10?4 and 10?2.  相似文献   

11.
Results of the scattered solar radiation spectrum measurements made deep in the Venus atmosphere by the Venera 11 and 12 descent probes are presented. The instrument had two channels: spectrometric (to measure downward radiation in the range 0.45 < γ < 1.17 μm) and photometric (four filters and circular angle scanning in an almost vertical plane). Spectra and angular scans were made in the height range from 63 km above the planet surface. The integral flux of solar radiation is 90 ± 12 W m?2 measured on the surface at the subsolar point. The mean value of surface absorbed radiation flux per planetary unit area is 17.5 ± 2.3 W m?2. For Venera 11 and 12 landing sites the atmospheric absorbed radiation flux is ~15 W m?2 for H >; 43 km and ~45 W m?2 for H < 48 km in the range 0.45 to 1.55 μm. At the landing sites of the two probes the investigated portion of the cloud layer has almost the same structure: it consists of three parts with boundaries between them at about 51 and 57 km. The base of clouds is near 48 km above the surface. The optical depth of the cloud layer (below 63 km) in the range 0.5 to 1 μm does not depend on the wavelength and is ~29 and ~38 for the Venera 11 and 12 landing sites, respectively. The single-scattering albedo, ω0, in the clouds is very close to 1 outside the absorption bands. Below 58 km the parameter (1 ? ω0) is <10?3 for 0.49 and 0.7 μm. The parameter (1 ? ω0) obviously increases above 60 km. Below 48 km some aerosol is present. The optical depth here is a strong function of wavelength. It varies from 1.5 to 3 at λ = 0.49 μm and from 0.13 to 0.4 at 1.0 μm. The mean size of particles below the cloud deck is about 0.1 μm. Below 35 km true absorption was found at λ < 0.55 μm with the (1 ? ω0) maximum at H ≈ 15 km. The wavelength and height dependence of the absorption coefficient are compatible with the assumption that sulfur with a mixing ratio ~2 × 10?8 normalized to S2 molecules is the absorber. The upper limits of the mixing ratio for Cl2, Br2, and NO2 are 4 × 10?8, 2 × 10?11, and 4 × 10?10, respectively. The CO2 and H2O bands are confidently identified in the observed spectra. The mean value of the H2O mixing ratio is 3 × 10?5 < FH2O < 10?4 in the undercloud atmosphere. The H2O mixing ratio evidently varies with height. The most probable profile is characterized by a gradual increase from FH2O = 2 × 10?5 near the surface to a 10 to 20 times higher value in the clouds.  相似文献   

12.
Glenn S. Orton 《Icarus》1975,26(2):142-158
Observations of Jovian limb structure at 8.11 and 8.45 microns are reported. These are used along with other limb structure and spectral data in the 8–14 micron region to derive a model of the thermal and cloud structure within the 1.0-0.01 bar pressure regime. The model is generally consistent with models derived from Pioneer 10 infrared radiometer data reported by Orton (1975b). The temperature is about 165K at 1.00 bar, 108K at 0.01 bar, and 143K at 0.03 bar. In zones, an optically opaque cloud of NH3 exists near the 143K (0.60 bar) level. A partly transparent haze of solid NH3 particles overlies the cloud. Belts are free of the cloud and have a much lower abundance of NH3 haze than the zones. The data are consistent with an NH3 gas abundance defined by saturation equilibrium, with a mixing ratio of 1.5 × 10?4 deep in the atmosphere, and with a CH4 mixing ratio of 2 × 10?3, about three times the currently accepted value.  相似文献   

13.
Yuk L. Yung  W.B. Demore 《Icarus》1982,51(2):199-247
The photochemistry of the stratosphere of Venus was modeled using an updated and expanded chemical scheme, combined with the results of recent observations and laboratory studies. We examined three models, with H2 mixing ratio equal to 2 × 10?5, 5 × 10?7, and 1 × 10?13, respectively. All models satisfactorily account for the observations of CO, O2, O2(1Δ), and SO2 in the stratosphere, but only the last one may be able to account for the diurnal behavior of mesospheric CO and the uv albedo. Oxygen, derived from CO2 photolysis, is primarily consumed by CO2 recombination and oxidation of SO2 to H2SO4. Photolysis of HCl in the upper stratosphere provides a major source of odd hydrogen and free chlorine radicals, essential for the catalytic oxidation of CO. Oxidation of SO2 by O occurs in the lower stratosphere. In the high-H2 model (model A) the OO bond is broken mainly by S + O2 and SO + HO2. In the low-H2 models additional reactions for breaking the OO bond must be invoked: NO + HO2 in model B and ClCO + O2 in model C. It is shown that lightning in the lower atmosphere could provide as much as 30 ppb of NOx in the stratosphere. Our modeling reveals a number of intriguing similarities, previously unsuspected, between the chemistry of the stratosphere of Venus and that of the Earth. Photochemistry may have played a major role in the evolution of the atmosphere. The current atmosphere, as described by our preferred model, is characterized by an extreme deficiency of hydrogen species, having probably lost the equivalent of 102–103 times the present hydrogen content.  相似文献   

14.
Paul G. Steffes 《Icarus》1985,64(3):576-585
Microwave absorption observed in the 35- to 48-km-altitude region of the Venus atmosphere has been attributed to the presence of gaseous sulfuric acid (H2SO4) in that region. This has motivated the laboratory measurement of the microwave absorption at 13.4- and 3.6-cm wavelengths from gaseous H2SO4 in a CO2 atmosphere under simulated conditions for that region. As part of the same experiments, upper limits on the saturation vapor pressure of gaseous H2SO4 have also been determined. The measurements for microwave absorption have been made in the 1- to 6-atm pressure range, with temperatures in the 500 to 575°K range. Using a theoretically derived temperature dependence, the best-fit expression for absorption from gaseous H2SO4 in a CO2 atmosphere at the 13.4-cm wavelength is 9.0 × 109 q(P)12T?3 (dB km?1), where q is the H2SO4 number mixing ratio, P is the pressure in atmospheres, and T is the temperature in degrees Kelvins. The best-fit expression for absorption at the 3.6-cm wavelength is 4.52 × 1010q(P)0.85T?3 (dB km?1). The inferred H2SO4 vapor pressure above liquid H2SO4 corresponds to ln p = 8.84 ? 7220/t where p is the H2SO4 vapor pressure (in atm) and T is the temperature in degrees Kelvins. These results suggest that abundances of gaseous H2SO4 on the order of 15 to 30 ppm could account for the microwave absorption observed by radio occultation experiments at 13.3- and 3.6-cm wavelengths. They also suggest that such abundances would correspond to saturation vapor pressure existing at or above the 46- to 48-km range, which correlates with the observed cloud base. It is suggested that future measurements of absorption in the 1- to 3-cm wavelength range will provide additional tools for monitoring variations in H2SO4 abundance via radio occultation and radio astronomical observations.  相似文献   

15.
Computations of the equivalent widths of absorption lines as a function of planetary phase angle are made for a homogeneous cloud with particles having the properties (shape, refractive index, and size distribution) deduced from polarimetry of Venus. The computed equivalent widths show an “inverse phase effect” comparable to that which is observed for CO2 lines on Venus. This result verifies a recent suggestion of Regas et al. that the existence of an inverse phase effect does not by itself imply the presence of multiple layers of scattering particles in the atmosphere of Venus.  相似文献   

16.
We have computed line profiles and curves of growth for both reflected and transmitted radiation for typical lines in CO2 bands (in the photographic infrared) which occur in the spectrum of Venus. In our model the pressure variation with altitude was considered and the base of the cloud deck was set at the 2 bar level. The temperature was held constant at 250K and a Voigt profile was used for the lineshape. We also assumed that the scale height of the cloud particles was equal to the scale height of the gas. The calculations were made for four values of the scattering optical thickness (τc = 0.1, 1.0, 10, and 100) using a continuum single scattering albedo ωc = 0.9975 (which gives a Bond albedo of 0.896 for τc = 100, the value observed for Venus at these wavelengths). Curves of growth are also presented for reflected radiation which has been averaged over the visible disk for three values of the Venus phase angle (0, 86, and 166°).  相似文献   

17.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   

18.
The infrared flux of Venus has been observed with a narrowband filter (λ = 3.6 μm, Δλ = 0.08 μm) from 1982 through 1984, covering a range of the phase angle α from 27 to 94°. Normalized values of flux at the Venus-Earth distance of 1 AU were (4.0–5.4) × 10?17W/cm2/cm?1 and the α dependence of the data is rather weak. Furthermore, when the evening terminator of Venus was seen, lower values of flux were obtained in contrast with higher values at the morning terminator. The α dependence is quite different from that of J.V. Martonchik and R. Beer (1975, J. Atmos. Sci.32, 1151–1156). Since we cannot find any significant problem in the two observational methods, the difference might suggest an intrinsic time variation of haze particles during these 10 years in the upper haze layer of the Venus cloud.  相似文献   

19.
Recent papers attributing the observed microwave opacity of the middle atmosphere of Venus to gaseous sulfur dioxide (SO2) and other cloud-related gases have motivated laboratory measurements of their microwave absorbing properties under simulated conditions for this region. In the pressure range from 1 to 5 atmospheres and in the temperature range from 297 to 355°K, the absorption of SO2 in a carbon dioxide (CO2) atmosphere, at 2.257 and 8.342 GHz, has been found to be approximately 50% larger than that calculated from Van Vleck-Weisskopf theory. The measured absorption is about 25 × 106 q?2p1.20 T?3.1 (dB km?1), where q is the sulfur dioxide number mixing ratio, ? is frequency in gigahertz, p is pressure in atmospheres, and T is temperature in degrees Kelvin. This represents the best-fit expression to the observed pressure dependence, while theoretical values of frequency and temperature dependence are accepted as being consistent with the measurements. Another cloud-related gas, sulfur trioxide (SO3), was also tested in a CO2 atmosphere and found to be relatively transparent. These results reduce the amount of SO2 in the Venus middle atmosphere required to explain the opacity measured by radio occulatation, but this amount still exceeds the abundance measured in situ by atmospheric probes, suggesting that there must be another important source of opacity. Preliminary measurements of the 13-cm absorptivity of gaseous sulfuric acid (H2SO4) show it to be a strong microwave absorber, and thus likely to be responsible for a significant and possibly major part of the observed opacity.  相似文献   

20.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号