首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collisionless deceleration of electron streams responsible for type IIIb bursts has been investigated. For this the difference between the mean velocities of electron streams at plasma levels corresponding to 25 and 12.5 MHz, on one hand, at 12.5 and 6.25 MHz, on the other hand, is estimated. The mean velocity of electron streams between these levels is determined by the time delay in the moments of arrival of radio bursts from these levels. The distance between plasma levels is determined under the assumption that the (statistical) mean velocity of sources of the diffusive type III bursts is constant and equal toc/3 at all considered levels of the solar corona.It is shown that under this assumption the electron streams with the initial velocities of the order of 0.4–0.8c undergo a sufficient deceleration which is characterized by a decrease in their mean velocity by 15–17% between plasma levels at 25 to 6.25 MHz. The stream deceleration becomes more essential with the growth of the initial velocity of the stream. On the other hand, the deceleration disappears when the initial velocity of the stream is of the order of 0.35c. This critical velocityV s * - 0.35c is assumed to define a boundary between two different expansion regimes of fast electrons moving in the solar corona. In the first regime (V s >V s * ) the induced scattering of plasma waves produces energy losses of the streams. A decrease in the velocities of streams up to the value of the order of 0.35c is due to these losses. In the second regime (V s -V s * ) a quasilinear expansion of streams is realized. In this case the energy losses of the streams are almost absent.  相似文献   

2.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

3.
M. L. Kaiser 《Solar physics》1975,45(1):181-187
Over 500 days of low-frequency (<1 MHz) radio observations from the IMP-6 spacecraft have been accumulated to produce a two-dimensional map (frequency vs elongation) of solar type III burst occurrences. This map indicates that most solar bursts in this frequency range are observed at the second harmonic of the plasma frequency rather than the fundamental. The map also shows that the solar wind electron density varies as R ?γ , where γ can be somewhat less than 2 to perhaps 3 or higher.  相似文献   

4.
An analysis has been made of type III bursts recorded during a decametric solar storm observed from July 29 to August 16, 1975 with the UTR-2 antenna (Kharkov, IRE Acad. Sci. Ukr. SSR). The bursts were recorded with a dynamic spectrograph and radiometers at 25.0, 20.0, 16.7, and 12.5 MHz. Daily observations have yielded histograms of the type III burst distribution with respect to the frequency drift rate in three subbands between 25.0 and 12.5 MHz. During the middle stage of the storm the drift rate was about twice as high as at the onset and the final stage of the storm. Abrupt changes in the mean frequency drift rate were registered some two to three days after the active region McMath 13790 had come onto the limb and also before it disappeared behind the solar disk. Sudden changes in the drift rates of the type III bursts were accompanied by sudden changes of their mean duration. The rather long burst durations observed at 25.0 MHz at the beginning and the end of the radio storm coincided with such at the twice lower frequency, i.e. 12.5 MHz, during the period when an increased drift rate was observed.Similar variations of type III burst parameters can be interpreted in the framework of the plasma mechanism of burst generation in the corona, assuming that at the middle stage of the storm the bursts observed in the 25.0–12.5 MHz range were emitted at the fundamental whereas when the emitting region was near the limb the bursts received corresponded to the second harmonic of the Langmuir oscillations in the range of 12.5 to 6.25 MHz excited at greater heights.  相似文献   

5.
T. Takakura 《Solar physics》1979,62(2):383-391
Numerical simulation for the type III solar radio bursts in meter wavelengths was made with the electron beam of a high number density enough to emit fundamental radio waves comparable in intensity with the second harmonic.This requirement is fulfilled if the optical thickness 1 for the negative absorption (amplification) becomes -23 to -25. Since 1 is roughly proportional to the time-integral of the electron flux of the beam, the intensity of the fundamental waves depends strongly on the parameters which determine the electron flux. Therefore, it is most unlikely that the harmonic pairs of type III bursts of the first and the second harmonics occur frequently with comparable intensities in a wide frequency range, say 200 MHz to 20 MHz, if we take the working hypothesis that the fundamental waves are caused by the scattering of electron plasma waves by thermal ions and amplified during the propagation along the beam.However, we cannot rule out the possibility that single type III bursts with short durations or group of such bursts are the fundamental waves emitted by the above mechanism, but only if the observed large size of the radio source can be attributed to the radio scattering alone.  相似文献   

6.
The propagation speed of the exciter of solar type III bursts is derived from observations with high space and time resolution at 22 GHz and 169 MHz. A survey of an active region during two successive days revealed a high degree of association between microwave and type III bursts. From a detailed investigation of their location and timing, which requires neither a coronal density model nor the assumption of radial propagation, the exciter is found to propagate at a speed above at least 0.6c, i.e., much faster than the commonly cited value of c/3. Type III bursts in the dm-m wave band, hence, may reveal the energization of electrons up to energies far above 100 keV.  相似文献   

7.
Storms of type III solar radio bursts observed from 5.4 ot 0.2 MHz consist of a quasi-continuous production of type III events observable for half a solar rotation but persisting in some cases for well over a complete rotation (Fainberg and Stone, 1970). The observed burst drift rates are a function of the heliographic longitude of the associated active region. This apparent drift rate dependence is a consequence of the radio emission propagation time from source to observer. Based on this dependence, a least squares analysis of 2500 drift rates between frequencies in the 2.8 to 0.7 MHz range yields an average exciter speed of 0.38 c for the height range from approximately 11 to 30 R . In conjunction with the available determinations of exciter speeds of 0.33 c close to the sun, i.e. less than 3 R , and with in situ measurements of 40 keV solar electrons by space probes, the present results suggest that the exciters are electron packets which propagate with little deceleration over distances of at least 1 AU.  相似文献   

8.
Baselyan  L. L.  Goncharov  N. Yu.  Zaitsev  V. V.  Zinichev  V. A.  Rapoport  V. O.  Tsybko  Ya. G. 《Solar physics》1974,39(1):223-231
The paper deals with the observations of the fine structure of type III bursts in the 12.5–25 MHz band using the UTR-2 (IRE AN UkSSR, Kharkov) radio telescope. A fine structure arises in the form of chains of short-lived narrow-band bursts. The chains have a frequency drift analogous to type III bursts. Observations allow two different-type chains to be singled out. Ordinary stria-bursts, split-pairs and triplets belong to the first type chains. They may also involve the echo-type phenomena The second type chains (IIId) involve diffusive stria-bursts, diffusive split-pairs and triplets. The analysis of a harmonic structure of chains incidates that the first type chains are generated at the frequencies close to the local plasma electron frequency pe . The second type chains and, consequently, diffusive stria-bursts correspond to the second harmonic of the plasma frequency 2 pe . Experimental data evidence that the type III bursts with a fine structure are excited by the faster particle streams than the ordinary type III bursts with a diffusive character both of the fundamental and the second harmonic.  相似文献   

9.
The initial growth of intensity, I, of the impulsive solar noise burst observed at 2800 MHz has been fitted with a parabolic curve of the form I=ct 2and the quantity c taken as the index of impulsiveness. Two groups of bursts comprising 85% of all impulsive bursts observed in 1962–63 and 1966 were selected for study. A good fit has been obtained for bursts having peak flux density up to 20 flux units, while for more intense bursts, the average observed growth is more rapid than the parabolic rate. The distribution of the index in the range 0.1 to more than 100 shows two peaks, one for c values 1–10 and another apparent peak for those with c greater than 100. The index is independent of the peak intensity of the burst and its position on the solar disc, while there is a small trend, indicating that shorter bursts are more impulsive than longer duration events. The more easily derived linear rate of rise, b = Peak Flux/Interval from start to peak is related to the parabolic impulsive index by b = 1.86 c 0.57. The non-linear rate of expansion of a flaring volume suggested by Pneuman when applied to explain the parabolic rise of microwave bursts indicates that the impulsiveness of bursts is inversely related to the contained magnetic field.  相似文献   

10.
Mel'nik  V.N. 《Solar physics》2003,212(1):111-119
It was found recently that fast electrons travel through the plasma of the solar corona in the form of beam-plasma structure (BPS), which consists of electrons and Langmuir waves. In this paper the influence of scattering BPS Langmuir waves off plasma ions (l+i=l+i) on BPS velocity is studied. We show that the maximum BPS velocity equals 0.35c, which is close to the velocity of Type III bursts sources.  相似文献   

11.
Ya. G. Tsybko 《Solar physics》1984,92(1-2):299-315
Type-IIIb, IIId, and III solar decametric radio bursts, being distinguished by the typical negative drift rate of their dynamic spectra, are compared. Observational data were obtained with a UTR-2 antenna during the period 1973–1982. During the analysis of the bursts of all these spectral varieties, the frequency drift time (drift delay) was measured in the ranges 25 to 12.5 MHz, 25 to 20 MHz, and 12.5 to 10 MHz. Durations of type-III bursts were determined at the harmonically-related frequencies of 25 and 12.5 MHz; radio source locations were also used.It is shown that these decametric bursts are distinctly divided into two groups: (1)type-IIIb chains of simple stria bursts and also normal type-III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum; (2) type-III bursts from type-IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type-IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates.The first group of the phenomena is associated with the fundamental F frequency and the second one, with the harmonic H of the coronal plasma frequency. The results of the present investigation agree well with earlier conclusions on the harmonic origin of decametric chains and type-III bursts. Measurements of drift delays in narrow frequency ranges, an octave apart, as well as type-III burst durations at harmonically-related frequencies confirm the existence of both F and H components in the solar radiation. The essential result of 10 years of decametric observations is that the frequency drift rates and durations are rather stable parameters for the various type-III bursts and stria-burst chains. The stability characterizes some unspecified conditions of burst generation in the middle corona.  相似文献   

12.
The theory of plasma emission is developed under the assumption that the Langmuir waves are generated by an isotropic distribution of fast electrons. Emission from inverse power-law distributions tend to favor emission at the second harmonic with brightness temperatures up to about 108 K at 100 MHz. The concept of a gap (in velocity space) distribution is developed. Very bright plasma emission can result from a gap distribution. For brightness temperatures between 109 K and 1011 K for the second harmonic the fundamental has a brightness temperature between 108 K and 109 K. For higher brightness temperatures the fundamental is amplified and can be very much brighter than the second harmonic. The maximum brightness temperatures for the fundamental and second harmonic at 100 MHz are about 1016 K and 1013 K respectively. Mechanisms by which a gap distribution might be formed are discussed and two effective mechanisms are identified. The theory is applied to the interpretation of radio bursts of types I, II, stationary IV and V. In each case the suggested mechanism appears to be favorable.  相似文献   

13.
Maxwell  A.  Rinehart  R. 《Solar physics》1974,37(2):437-442

The dynamic radio spectrum of the class 3B solar flare of 1972, August 7, 15: 00 UT, over the band 10 to 2000 MHz is examined. Type II and type IV bursts in the spectrum are interpreted in terms of a piston-driven shock, which appeared to be travelling at a velocity of about 1500 km s?1 and which generated pulsations in the band 100 to 200 MHz as it passed through the corona. The progress of the shock through the interplanetary plasma was subsequently monitored by Malitson et al. with radio equipment covering the band 0.03 to 2.6 MHz on the IMP-6 satellite.

  相似文献   

14.
The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (a) the occurrence rate of bursts falls off with increasing flux, S, according to the power law S –1.5, and (b) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the Earth-Sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.Presently at the University of Maryland, College Park, Maryland.  相似文献   

15.
Type III bursts often have brightness temperatures at the fundamental greater than 109K. If the fundamental emission is due to scattering of Langmuir waves into transverse waves by thermal ions, this implies that induced scattering dominates over spontaneous scattering, which in turn requires that the energy density in Langmuir waves be greater than some minimum value, e.g. W l > 3 × 10-10 erg cm-3 for bursts at f p = 100 MHz. Such Langmuir waves become isotropic on a time-scale shorter than the rise-time of type III bursts, e.g. < l s at f p = 100 MHz. Consequently, their coalescence, leading to emission at the second harmonic, proceeds. The above inequalities would imply a brightness temperature at the second harmonic in excess of 109K at f = 200 MHz.The predicted values of the brightness temperatures T1 t and T2 t (at the fundamental and second harmonic respectively) can be expressed in terms of an optical depth . After is eliminated a functional relation between T1 t , T2 t and the plasma frequency, f p , remains. The form of this relation is not dependent on a quantitative theory of how the Langmuir waves are generated by the stream of electrons. Consequently, comparison with observed quantities should provide further insight into the detailed properties of the emission processes.  相似文献   

16.
We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.NAS/NRC Postdoctoral Research Associate on leave from Laboratory Associated with CNRS No. 264, Paris Observatory, France.  相似文献   

17.
Electron beams in the low corona   总被引:3,自引:0,他引:3  
Selected high-resolution spectrograms of solar fast-drift bursts in the 6.2–8.4 GHz range are presented. The bursts have similar characteristics as metric and decimetric type III bursts: rise and decay in a few thermal collision times, total bandwidth 3% of the center frequency, low polarization, drift rate of the order of the center frequency per second, and flare association. They appear in several groups per flare, each group consisting of some tens of single bursts. Fragmentation is also apparent in frequency; there are many narrowband bursts randomly scattered in the spectrum. The maximum frequency of the bursts is highly variable.The radiation is interpreted in terms of plasma emission of electron beams at plasma densities of more than 1011 cm–-3. At this extremely high frequency, emission from the plasma level even at the harmonic is only possible in a very anisotropic plasma. The scale lengths perpendicular and parallel to the magnetic field can be estimated. A model of the source region and its environment is presented.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

18.
K. Kai 《Solar physics》1970,11(2):310-318
A flare-associated complex outburst was observed on 1968, October 23–24 with the 80 MHz Culgoora radioheliograph. Two harmonic type II bursts were followed by two successive extended sources with arch structure which appeared further beyond the optical limb than the preceding sources. The second arch showed a remarkable expansion with a projected velocity of 1200 km/sec. At its maximum the arch extended to a height of 2R . The height-time plots derived from both the radioheliograph and spectrum observations suggest that two shock waves of different propagation velocities were initiated at the flash phase of the flare: the faster one was responsible for the first type II burst and the first radio-emitting arch; the slower one for the second type II burst and the second arch whose expansion advanced with the shock front.  相似文献   

19.
A new radio spectropolarimeter for solar radio observation has been developed at Tohoku University and installed on the Iitate Planetary Radio Telescope (IPRT) at the Iitate observatory in Fukushima prefecture, Japan. This system, named AMATERAS (the Assembly of Metric-band Aperture TElescope and Real-time Analysis System), enables us to observe solar radio bursts in the frequency range between 150 and 500 MHz. The minimum detectable flux in the observation frequency range is less than 0.7 SFU with an integration time of 10 ms and a bandwidth of 61 kHz. Both left and right polarization components are simultaneously observed in this system. These specifications are accomplished by combining the large aperture of IPRT with a high-speed digital receiver. Observational data are calibrated and archived soon after the daily observation. The database is available online. The high-sensitivity observational data with the high time and frequency resolutions from AMATERAS will be used to analyze spectral fine structures of solar radio bursts.  相似文献   

20.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号