共查询到20条相似文献,搜索用时 15 毫秒
1.
K. AOKI T. ITAYA T. SHIBUYA H. MASAGO Y. KON M. TERABAYASHI Y. KANEKO T. KAWAI S. MARUYAMA 《Journal of Metamorphic Geology》2008,26(5):583-602
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 4–4.5 kbar (15–17 km depth), and 240–270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite K–Ar ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the K–Ar phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 3–4 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion. 相似文献
2.
Zircon fission track dating and track length analysis in the high‐grade part of the Asemigawa region of the Sanbagawa belt demonstrates a simple cooling history passing through the partial annealing zone at 63.2 ± 5.8 (2 σ) Ma. Combining this age with previous results of phengite and amphibole K–Ar and 40Ar/39Ar dating gives a cooling rate of between 6 and 13 °C Myr?1, which can be converted to a maximum exhumation rate of 0.7 mm year?1 using the known shape of the P–T path. This is an order of magnitude lower than the early part of the exhumation history. In contrast, zircon fission track analyses in the low‐grade Oboke region show that this area has undergone a complex thermal history probably related to post‐orogenic secondary reheating younger than c. 30 Ma. This event may correlate with the widespread igneous activity in south‐west Japan around 15 Ma. The age of subduction‐related metamorphism in the Oboke area is probably considerably older than the generally accepted range of 77–70 Ma. 相似文献
3.
苏北—鲁东南高压,超高压变质带剥露过程中伸展构造作用 总被引:5,自引:2,他引:5
尽管许多地质学家提出了不同的超高压变质岩石形成与折返模式,但高压、超高压变质岩折返与剥露机制仍是大陆造山带动力学研究中的热点和焦点问题。本文明确提出并研究了分布于苏北-胶南变质岩区西北和北部边缘的地壳规模的拆离伸展型韧性剪切带。通过韧性剪切带几何学、运动学、变形环境分析和形成时代的讨论,认为与高压、超高压变质带展布方向斜交的斜向伸展构造作用,是苏北-鲁东南高压、超高压变质带从中地壳抬升至地表的主导 相似文献
4.
Occurrence of lawsonite in pelitic schists from the Sanbagawa metamorphic belt, central Shikoku, Japan 总被引:1,自引:0,他引:1
The occurrence of lawsonite is described from pelitic schists of the lower-grade part of the pumpellyite-bearing subzone of the chlorite zone in the Asemi River area of central Shikoku. The lawsonite-bearing parageneses are consistent with the generally accepted view that the Sanbagawa facies series represents higher pressures than the lawsonite-bearing facies series in New Zealand. 相似文献
5.
Yasuyuki Banno 《Lithos》2000,50(4):289-303
The retrograde chemical zonal structure of amphibole in hematite-bearing basic and quartz schists from the higher grade zone in the Saruta-gawa area of the Sanbagawa belt was studied to investigate the relationships between the prograde and retrograde P–T paths of the Sanbagawa metamorphism. This amphibole coexists with chlorite, epidote, muscovite, albite, quartz and hematite, and is composed of Al-rich core and Al-poor mantle. The core is fairly homogeneous and has a barroisitic composition. In the mantle part, [B]Na increases with decreasing [4]Al towards the margins, which have winchite–magnesioriebeckite compositions. The barroisite–winchite–magnesioriebeckite composite crystal is sometimes rimmed by actinolite and/or winchite with low [4]Al and [B]Na. The Al-rich core and Al-poor mantle are regarded as prograde and retrograde products, respectively. The retrograde mantle in the Saruta-gawa area: (1) is systematically richer in [B]Na [0.40–1.73 per formula unit (pfu; for O=23)] than that from the same grade zone in the Asemi-gawa area (0.19–0.78 pfu), about 8 km south of the studied area; (2) tends to be [B]Na-poorer (less than 1.73 pfu) than prograde sodic amphibole (up to 1.93 [B]Na pfu) produced in the peak temperature stage from the lower grade zone in the same and other areas; and (3) extends its compositional range towards higher [B]Na and lower [4]Al than prograde-formed amphibole from the same grade zone in the same area. These zonal characteristics imply that (1) the Saruta-gawa samples experienced retrograde metamorphism under higher P/T conditions than the Asemi-gawa samples, (2) the retrograde P–T path of the Saruta-gawa area passes on the lower pressure side of the metamorphic field gradient, and (3) the Saruta-gawa samples underwent retrograde metamorphism under higher P/T conditions than the prograde metamorphism. The higher P/T conditions of the retrograde metamorphism suggests an increasing dP/dT of the geotherm during exhumation. Retrograde P–T conditions during the formation of magnesioriebeckite can be roughly estimated at 7–8 kbar, 400–450°C based on semi-quantitative phase relations of actinolite–winchite–magnesioriebeckite–barroisite series associated with chlorite, epidote, muscovite, albite, quartz and hematite. 相似文献
6.
超高压变质岩的折返过程是陆陆碰撞边界演化的关键问题。南倾的花凉亭-弥陀剪切带位于南大别低温-超高压变质
带和中大别中温-超高压变质带之间,矿物拉伸线理倾伏向为SE,逆冲和走滑分量大致相等。电子背散射衍射分析表明:
花凉亭-弥陀剪切带大多数样品的石英组构记录了上盘向NW的剪切变形,反映了中大别超高压变质岩向SE的快速折返,
而部分样品的石英具有上盘向SE的剪切指向,与早白垩世花岗岩穹隆发育导致的区域伸展有关。对前人的岩石学和年代学
成果进行总结,发现大别山进变质和超高压变质峰期/退变质的锆石U-Pb年龄从南往北逐渐变新,南大别和中大别在215~
225 Ma同时经历了高压榴辉岩相退变质作用,在191~195 Ma经历了绿片岩相变质作用。超高压变质岩的白云母和黑云母的
40Ar/39Ar年龄靠近郯庐断裂时偏年轻,可能受到郯庐断裂活动的影响。南大别和中大别变质峰期温压的等值线与花凉亭-弥
陀剪切带的走向斜交,反映了超高压变质岩的斜向折返。因此,南大别低温-超高压变质带在~236 Ma最先开始折返,之后
中大别和北大别依次发生快速折返,具有不同折返速率和折返角度的构造岩片通过韧性剪切带调节相对运动。 相似文献
7.
Petrogenesis and implications of jadeite‐bearing kyanite eclogite from the Sanbagawa belt (SW Japan)
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (P–T) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth. 相似文献
8.
苏鲁高压—超高压变质带的折返构造及折返机制 总被引:77,自引:8,他引:77
苏鲁高压—超高压变质带的折返构造是由韧性剪切叠覆构造岩片组成,具NWW-SEE向剪切矢量及SEE向NWW的剪切指向,与折返构造伴随的高压和超高压退变质反应过程与石英从高温—中温—低温的组构模式吻合。150~100Ma期间的伸展事件包含了北界韧性伸展转换性剪切带及莱阳盆地的形成、苏鲁高压—超高压变质带北部花岗岩侵位、折返面理弯曲形成背形构造及伴随的韧—脆性正滑构造。多学科的综合研究表明,240~220Ma扬子板块巨量物质往北深俯冲于北中国板块之下,220~200Ma高压—超高压变质岩石整体快速折返,折返板片中保存的自上而下变质岩石单元序列与剪切叠覆构造岩片的物质组成序列基本一致。提出苏鲁高压—超高压变质折返板片呈上拱的舌形体,变形分解表明苏鲁高压—超高压变质板片是在“挤出”机制下折返及受后期伸展事件的改造。 相似文献
9.
In central Shikoku, SW Japan, the Mikabu belt is bounded to the north by the Sanbagawa belt, and to the south by the northern (N) Chichibu belt. The N-Chichibu belt can be further subdivided into northern and southern parts. There is no apparent difference in the overall geology, structure, or fossil and radiometric ages between the Mikabu belt and the northern part of the N-Chichibu belt. Greenstones from the Mikabu belt and the northern part of the N-Chichibu belt show evidence for similar low-grade metamorphism, and include the following mineral assemblages with albite+chlorite in excess: metamorphic aragonite, sodic pyroxene+quartz, epidote+actinolite+pumpellyite, glaucophane+ pumpellyite+quartz, and lawsonite (not with actinolite or glaucophane). These similarities suggest that the Mikabu belt and the northern part of the N-Chichibu belt belong to the same geological unit (the MB-NNC complex). The mineral assemblages also indicate that the MB-NNC complex belongs to a different metamorphic facies from the low-grade part of the Sanbagawa belt, that is, the former represents lower temperature/higher pressure conditions than the latter. Structural and petrological continuity between the MB-NNC complex and Sanbagawa belt has not yet been confirmed, but both have similar radiometric ages. It is therefore most likely that the MB-NNC complex and Sanbagawa belt belong to the same subduction complex, and were metamorphosed under similar but distinct conditions. These two units were juxtaposed during exhumation. In contrast, the southern part of the N-Chichibu belt is distinct in lithology and structure, and includes no mineral assemblages diagnostic of the MB-NNC complex and the Sanbagawa belt. Thus, the southern part of the N-Chichibu belt may represent a different geological unit from the MB-NNC complex and Sanbagawa belt. 相似文献
10.
Hiroshi Yamamoto Kazuaki Okamoto Yoshiyuki Kaneko Masaru Terabayashi 《Tectonophysics》2004,387(1-4):151-168
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower P–T) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion. 相似文献
11.
LiuYican LiShuguang XuShutong ChenGuanbao 《中国地质大学学报(英文版)》2004,15(4):349-354
The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e. g. , quartz needles in Na-clinopyroxene and rotile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called ““double symplectite““ here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g. , omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process. 相似文献
12.
新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学 总被引:33,自引:0,他引:33
新疆克拉玛依中基性岩墙群出现在后碰撞花岗岩(锆石U-Pb年龄约为300~320Ma)及其下石炭统火山岩-硅质岩围岩之中,空间分布受区域构造裂隙控制,总体走向以280°~300°为主,K-Ar表观年龄为241.3~271.5Ma。岩墙群属于亚碱性系列,根据岩性和Mg#的不同,可分为辉绿岩岩墙、高Mg#闪长玢岩岩墙和低Mg#(石英)闪长玢岩岩墙等三组。主元素、稀土元素和其他微量元素等资料表明,形成岩墙群的岩浆起源于亏损地幔,由部分熔融作用形成的原始玄武质岩浆在侵位过程中发生了分离结晶作用,但同时还受到同化混染作用的影响,致使克拉玛依岩墙群具有较典型的AFC过程的成因特征。克拉玛依岩墙群形成于新疆北部后碰撞伸展构造环境,是幔源岩浆活动的产物,因而可以作为地壳垂向生长的标志之一。 相似文献
13.
Metamorphic evolution of garnet-bearing ultramafic rocks from the Gongen area, Sanbagawa belt, Japan 总被引:2,自引:0,他引:2
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism. 相似文献
14.
Teyruyoshi Imaoka Kazuo Nakashima Testumaru Itaya Toshinori Okada 《Resource Geology》2001,51(1):55-62
Abstract: Crystallinity, chemical compositions and K-Ar ages of sericites in highly-sericitized granites and associated fissure-filling veins were examined to delineate the timing and duration of the hydrothermal activity in the Oligocene Hamada cauldron in the San-in district, SW Japan. Sericite separates (>2 μm) from the highly-sericitized granites consist mainly of 2M1 polytype having high crystallinity and low Kübler indices of 0.22–0.35, while those in the fissure-filling veins have lower 2M1 /1Md ratios and crystallinity, and high Kübler indices of 0.29–0.35. This suggests that the sericites in highlysericitized granites were formed at a higher temperature than the vein sericites.
Sericites from the highly-sericitized granites of the Kumogi pluton give K-Ar ages of 30.0±0.7, 30.4±0.7, 30.6±0.7, 30.6±0.7, 32.1±0.7, 32.3±0.7 and 33.0±0.7 Ma (1), while those of the central plutons, 33.8±0.7 and 33.8±0.7 Ma. Sericites in the fissure-filling veins of the Kumogi granite give K-Ar ages of 31.0±0.7, 31.5±0.7, 31.6±0.7, 31.7±0.7 and 32.3±0.7 Ma. Biotite separates from the fresh Kumogi granite give K-Ar ages of 31.7±0.8, 32.0±0.8, 32.7±0.7 and 33.5±0.7 Ma. The K-Ar age data revealed that the hydrothermal alteration began at about 33 Ma and ended by about 30 Ma and that the period of sericite alteration was nearly synchronous with the cooling of the granite intrusions in the Hamada cauldron.
Despite intense hydrothermal alteration, the Oligocene granitoids have not accompanied with any economic base metal mineralization. The bulk chemical analyses of sericite separates in the veins indicate that the post-magmatic fluids were originally barren in heavy metals. 相似文献
Sericites from the highly-sericitized granites of the Kumogi pluton give K-Ar ages of 30.0±0.7, 30.4±0.7, 30.6±0.7, 30.6±0.7, 32.1±0.7, 32.3±0.7 and 33.0±0.7 Ma (1), while those of the central plutons, 33.8±0.7 and 33.8±0.7 Ma. Sericites in the fissure-filling veins of the Kumogi granite give K-Ar ages of 31.0±0.7, 31.5±0.7, 31.6±0.7, 31.7±0.7 and 32.3±0.7 Ma. Biotite separates from the fresh Kumogi granite give K-Ar ages of 31.7±0.8, 32.0±0.8, 32.7±0.7 and 33.5±0.7 Ma. The K-Ar age data revealed that the hydrothermal alteration began at about 33 Ma and ended by about 30 Ma and that the period of sericite alteration was nearly synchronous with the cooling of the granite intrusions in the Hamada cauldron.
Despite intense hydrothermal alteration, the Oligocene granitoids have not accompanied with any economic base metal mineralization. The bulk chemical analyses of sericite separates in the veins indicate that the post-magmatic fluids were originally barren in heavy metals. 相似文献
15.
Hydration reactions are direct evidence of fluid–rock interaction during regional metamorphism. In this study, hydration reactions to produce retrograde actinolite in mafic schists are investigated to evaluate the controlling factors on the reaction progress. Mafic schists in the Sanbagawa belt contain amphibole coexisting with epidote, chlorite, plagioclase and quartz. Amphibole typically shows two types of compositional zoning from core to rim: barroisite → hornblende → actinolite in the high‐grade zone, and winchite → actinolite in the low‐grade zone. Both types indicate that amphibole grew during the exhumation stage of the metamorphic belt. Microstructures of amphibole zoning and mass‐balance relations suggest that: (1) the actinolite‐forming reactions proceeded at the expense of the preexisting amphibole; and (2) the breakdown reaction of hornblende consumed more H2O fluid than that of winchite, when one mole of preexisting amphibole was reacted. Reaction progress is indicated by the volume fraction of actinolite to total amphibole, Yact, with the following details: (1) reaction proceeded homogeneously in each mafic layer; (2) the extent of the hornblende breakdown reaction is commonly low (Yact < 0.5), but it increases drastically in the high‐grade part of the garnet zone (Yact > 0.7); and (3) the extent of the winchite breakdown reaction is commonly high (Yact > 0.7). Many microcracks are observed within hornblende, and the extent of hornblende breakdown reaction is correlated with the size reduction of the hornblende core. Brittle fracturing of hornblende may have enhanced retrograde reaction progress by increasing of influx of H2O and the surface area of hornblende. In contrast to high‐grade rocks, the winchite breakdown reaction is well advanced in the low‐grade rocks, where reaction progress is not associated with brittle fracturing of winchite. The high extent of the reaction in the low‐grade rocks may be due to small size of winchite before the reaction. 相似文献
16.
Atsushi Okamoto Taketo Kikuchi Noriyoshi Tsuchiya 《Contributions to Mineralogy and Petrology》2008,156(3):323-336
Pelitic schists of the Sanbagawa metamorphic belt contain several types of polymineralic veins that formed during the late
stages of exhumation. The vein mineral assemblages are quartz + albite + K-feldspar + chlorite ± calcite (Type I, II) and
quartz + albite + calcite (Type III). Type I and II veins contain quartz and albite with stretched-crystal and elongate-blocky
textures, respectively. The mineral species within Type I veins vary with compositional bands within the host rocks. Type
III veins are characterized by euhedral to subhedral quartz grains with concentric zoning and a homogeneous distribution along
the vein length. The vein textures vary depending on the crack aperture during multiple crack-seal events: <0.08 mm for Type
I, and 0.5–10 mm for Type III. Type II veins show intermediate features between Type I and III veins in terms of mineral distribution
(weak dependence on the host rock composition) and apparent crack aperture (less than 1–15 mm). These observations suggest
a transition in the dominant transport mechanism of vein components with increasing crack aperture, from diffusion from host
rocks to fluid advection along cracks. 相似文献
17.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak P–T conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength. 相似文献
18.
Middle Eocene conglomerates which overlie the Sanbagawa metamorphic rocks contain clasts of metamorphic rock with isotope ages of 120-85 Ma, which fall within the age range reported from the Sanbagawa metamorphic rocks. They were derived from the chlorite to oligoclase zones of the Sanbagawa metamorphic belt. Clasts of garnet amphibolite and oligoclase-biotite schist show a mineral assemblage similar to the highest grade Sanbagawa schists. However, the metamorphic temperatures estimated by various mineralogical thermometers show that some of the clasts were formed at higher temperatures than the in situ Sanbagawa metamorphic rocks. Such higher grade rocks were at the surface by the Middle Eocene and for the most part they have been eroded away. Cretaceous and post-Cretaceous sediments overlie, or are in fault contact with, the Sanbagawa metamorphic rocks which suggests that rocks in the belt were uplifted and eroded from the latest Cretaceous to Middle Eocene time after strike-slip movement along the Median Tectonic Line. Since the Middle Eocene, the belt has experienced relatively slow uplift which was locally around 2 km in central Shikoku. 相似文献
19.
S. ENDO S.WALLIS T. HIRATA R. ANCZKIEWICZ J. PLATT M. THIRLWALL Y. ASAHARA 《Journal of Metamorphic Geology》2009,27(5):371-384
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c. 120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c. 88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c. 116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c. 27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone. 相似文献
20.
K-Ar Ages of Tin-Polymetallic Mineralization in the Oruro Mining District, Central Bolivian Tin Belt 总被引:2,自引:0,他引:2
Abstract. K-Ar age determinations were carried out on vein- and rock-forming minerals from five vein-type tin-polymetallic ore deposits of the Oruro mining district in the central part of the Bolivian tin belt. The sericite from vein selvedges and an altered host rock provides good estimates of the ages of hypogene mineralization, and supergene alunite and jarosite provide ages for erosional and weathering episodes. It is concluded that hypogene mineralization in the Oruro mining district took place during the early to middle Miocene: 15.8±0.8 Ma at San José, 20.1±l.l Ma at Morococala, 20.5±1.0 Ma at Avicaya, and 19.6±1.0 Ma at Llallagua. Fine grained supergene alunite (δ34 S = -10.1 960) and jarosite yield K-Ar ages of 6.7±0.7 Ma at Avicaya and 3.9±0.7 Ma at Bolivar, respectively, suggesting that erosion and chemical weathering were active at those times. 相似文献