首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r 2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe,     , and measure a positive cosmological constant,     . Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.  相似文献   

2.
Clusters of galaxies are the most massive virialized structures in the Universe. Given that the mass function of large-scale structures decreases exponentially at the high-mass end, galaxy clusters are a sensitive probe of its normalization and redshift evolution, and hence of the cosmological parameters that most influence it. It will be discussed to what extent these cosmological parameters, namely the present amplitude of density perturbations, the matter density and a possible cosmological constant, can be constrained using observational data on the present and past abundance of galaxy clusters. Results will be presented based on the available data, as well as expected constraints from the X-ray Cluster Survey (XCS).  相似文献   

3.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

4.
Some proposals have been made in recent years that extremely low-frequency cosmic gravitational radiation with wavelengths of the order megaparsecs and larger and with the cosmological energy density may be able to explain the virial mass discrepancy in at least some systems of galaxies. The question is rediscussed here with the result that — for all conceivable spectral densities — the gravitational wave influence on the propagation of light from a galaxy cluster does not solve redshift problem for rich and distant clusters — at least if waves with an energy density not exceeding the critical cosmological density are considered.  相似文献   

5.
The age of the Universe has been increasingly constrained by different techniques, such as the observations of type Ia supernovae (SNIa) at high redshift or dating the stellar populations of globular clusters. In this paper, we present a complementary approach using the colours of the brightest elliptical galaxies in clusters over a wide redshift range  ( z ≲ 1)  . We put new and independent bounds on the dark energy equation of state parametrized by a constant pressure-to-density ratio   w Q  and by a parameter (ξ) which determines the scaling between the matter and dark energy densities. We find that accurate estimates of the metallicities of the stellar populations in moderate and high-redshift cluster galaxies can pose stringent constraints on the parameters that describe dark energy. Our results are in good agreement with the analysis of dark energy models using SNIa data as a constraint. Accurate estimates of the metallicities of stellar populations in cluster galaxies at   z ≲ 2  will make this approach a powerful complement to studies of cosmological parameters using high-redshift SNIa.  相似文献   

6.
In this paper, we explore the plausible luminosity evolution of early-type galaxies in different cosmological models by constructing a set of pure luminosity evolution (PLE) models via the choices of the star-formation rate (SFR) parameters and formation redshift z f of galaxies, with the observational constraints derived from the Hubble Space Telescope ( HST  ) morphological number counts for elliptical and S0 galaxies of the Medium Deep Survey (MDS) and the Hubble Deep Field (HDF). We find that the number counts of early-type galaxies can be explained by the pure luminosity evolution models, without invoking exotic scenarios such as merging or introducing an additional population, but the evolution should be nearly passive, with a high z f assumed. The conclusion is valid in all of the three cosmological models we adopt in this paper. We also present the redshift distributions for three bins of observed magnitudes in the F814w passband, to show the redshift at which the objects that dominate the counts at a given magnitude may be found. The predictions of the redshift distribution of 22.5 <  b j  < 24.0 are also presented for comparison with future data.  相似文献   

7.
By stacking an ensemble of strong lensing clusters, we demonstrate the feasibility of placing constraints on the dark energy equation of state. This is achieved by using multiple images of sources at two or more distinct redshift planes. The sample of smooth clusters in our simulations is based on observations of massive clusters and the distribution of background galaxies is constructed using the Hubble Deep Field . Our source distribution reproduces the observed redshift distribution of multiply imaged sources in Abell 1689. The cosmology recovery depends on the number of image families with known spectroscopic redshifts and the number of stacked clusters. Our simulations suggest that constraints comparable to those derived from other competing established techniques on a constant dark energy equation of state can be obtained using 10–40 clusters with five or more families of multiple images. We have also studied the observational errors in the image redshifts and positions. We find that spectroscopic redshifts and high-resolution Hubble Space Telescope ( HST ) images are required to eliminate confidence contour relaxation relative to the ideal case in our simulations. This suggests that the dark energy equation of state, and other cosmological parameters, can be constrained with existing HST images of lensing clusters coupled with dedicated ground-based arc spectroscopy.  相似文献   

8.
Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size—redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5–6.5 are estimated in terms of a grid of cosmological models with different density parameters (Ω V ; Ω m ). The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.  相似文献   

9.
The scaling of the apparent angular diameter of galaxies with redshift θ(z) is a powerful discriminator of cosmological models. In this paper we argue that the rotational velocity of distant galaxies, when interpreted as size indicator, may be used as an interesting tool to select high redshift standard rods. Upcoming deep redshift surveys will allow an implementation of this classical geometrical test to measure directly the amplitude of the cosmological constant Λ, or to constrain the cosmic equation of state parameter for a smooth dark energy component (w = p/ρ, —1 ≤ w < 0).  相似文献   

10.
The quest for the cosmological parameters has come to fruition with the identification of a number of supernovae at a redshift of     . Analyses of the brightness of these standard candles reveal that the Universe is dominated by a large cosmological constant. The recent identification of the     SN 1997ff in the northern Hubble Deep Field has provided further evidence for this cosmology. Here we examine the case for gravitational lensing of SN 1997ff owing to the presence of galaxies lying along our line of sight. We find that, while the alignment of SN 1997ff with foreground masses is not favourable for it to be multiply imaged and strongly magnified, two galaxies do lie close enough to result in significant magnification:     for the case where these elliptical galaxies have a velocity dispersion of 200 km s−1. Given the small difference between supernova brightnesses in different cosmologies, detailed modelling of the gravitational lensing properties of the intervening matter is therefore required before the true cosmological significance of SN 1997ff can be deduced.  相似文献   

11.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

12.
We measure the relative evolution of the number of bright and faint (as faint as  0.05 L *)  red galaxies in a sample of 28 clusters, out of which 16 are at  0.50 ≤ z ≤ 1.27  , all observed through a pair of filters bracketing the 4000-Å break rest frame. The abundance of red galaxies, relative to bright ones, is constant over all the studied redshift range,  0 < z < 1.3  , and rules out a differential evolution between bright and faint red galaxies as large as claimed in some past works. Faint red galaxies are largely assembled and in place at   z = 1.3  and their abundance does not depend on cluster mass, parametrized by velocity dispersion or X-ray luminosity. Our analysis, with respect to the previous one, samples a wider redshift range, minimizes systematics and put a more attention to statistical issues, keeping at the same time a large number of clusters.  相似文献   

13.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

14.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

15.
The dynamical mass of clusters of galaxies, calculated in terms of MOdified Newtonian Dynamics (MOND), is a factor of 2 or 3 times smaller than the Newtonian dynamical mass but remains significantly larger than the observed baryonic mass in the form of hot gas and stars in galaxies. Here I consider further the suggestion that the undetected matter might be in the form of cosmological neutrinos with mass of the order of 2 eV. If the neutrinos and baryons have comparable velocity dispersions and if the two components maintain their cosmological density ratio, then the electron density in the cores of clusters should be proportional to T 3/2, as appears to be true in non-cooling flow clusters. This is equivalent to the 'entropy floor' proposed to explain the steepness of the observed luminosity–temperature relation, but here preheating of the medium is not required. Two-fluid (neutrino–baryon) hydrostatic models of clusters, in the context of MOND, reproduce the observed luminosity–temperature relation of clusters. If the β law is imposed on the gas density distribution, then the self-consistent models predict the general form of the observed temperature profile in both cooling and non-cooling flow clusters.  相似文献   

16.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

17.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

18.
Far-UV echelle spectroscopy of the radio-quiet QSO H1821+643 (zem=0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) at approximately 7 km s-1 resolution, reveals four definite O vi absorption-line systems and one probable O vi absorber at 0.15相似文献   

19.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号