首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present calculations of the dynamics of highly ionized gas (HIG) clouds that are confined by external pressure, and are photoionized by AGN continuum. We focus on the gas that is seen, in absorption, in the X-ray spectrum of many AGN and show that such gas can reach hydrostatic equilibrium under various conditions. The principal conclusion is that the clouds can be accelerated to high velocities by the central X-ray source. The dynamical problem can be reduced to the calculation of a single parameter, the average force multiplier, 〈 M 〉. The typical value of 〈 M 〉 is ∼10 suggesting that radiation pressure acceleration by X-rays is efficient for L / L Edd≳0.1 . The terminal velocity scales with the escape velocity at the base of the flow and can exceed it by a large factor. The typical velocity for a HIG flow that originates at R =1017 cm in a source with L x =1044 erg s−1 is ∼1000 km s−1, i.e. similar to the velocities observed in several X-ray and UV absorption systems.
Highly ionized AGN clouds are driven mainly by bound–free absorption, and bound–bound processes are less important unless the lines are significantly broadened or the column density is very small. Pressure laws that result in constant or outward decreasing ionization parameters are most effective in accelerating the flow.  相似文献   

2.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

3.
We present the luminosity function and measurements of the scalelengths, colours and radial distribution of dwarf galaxies in the Coma cluster down to R =24. Our survey area is 674 arcmin2; this is the deepest and most detailed survey covering such a large area.
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ L α that is steep (α∼−1.7) for −15< MR <−11, and is shallower brighter than this. The curvature in the luminosity function at MR ∼−15 is statistically significant.
(2) The galaxies that contribute most strongly to the luminosity function at −14< MR <−12 have colours and scalelengths that are consistent with those of local dwarf spheroidal galaxies placed at the distance of Coma.
(3) These galaxies with −14< MR <−12 have a colour distribution that is very strongly peaked at B − R =1.3. This is suggestive of a substantial degree of homogeneity in their star formation histories and metallicities.
(4) These galaxies with −14< MR <−12 also appear to be more confined to the cluster core ( r ∼200 kpc) than the brighter galaxies. Alternatively, this observation may be explained in part or whole by the presence of an anomalously high number of background galaxies behind the cluster core. Velocity measurements of these galaxies would distinguish between these two possibilities.  相似文献   

4.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

5.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

6.
In the context of the unified model of Seyfert galaxies, we use observations from the literature and a radiative transfer model to investigate the near-IR to mm emission produced by the presumed torus in the Circinus galaxy, from 2 μm to 1.3 mm. From the infrared SED modelling, we find that the total luminosity ( L IR) in this wavelength range consists of similar contributions from the torus and starburst with a ratio of nuclear luminosity to starburst luminosity ( L NUC/ L SB)∼0.8 .
By using a similar torus model to that of NGC 1068, but without the conical dust , we find an upper limit to the outer torus radius of ∼12 pc with a best fit of ∼2 pc. The upper limit torus size estimated from the radiative transfer modelling is consistent with the 16-pc torus radius estimated from near-IR imaging polarimetry of Circinus.  相似文献   

7.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

8.
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at   V = 8.52, B − V =+1.12, V − R C=+0.76, V − I C=+1.59  and   R C− I C=+0.83  , after fast initial rise and a pre-maximum halt lasting a week. Decline times were   t V 2= 26.5, t B 2= 30, t V 3= 48.5  and   t B 3= 56.5  d. The distance to the nova is   d = 3.7 ± 0.2 kpc  , the height above the Galactic plane is   z = 215 pc  , the reddening is   E ( B − V ) = 0.90  and the absolute magnitude at maximum is   M max V =−7.2  and   M max B =−7.0  . The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard 'Fe  ii '-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was  ∼730 km s−1  , and the displacement from it of the principal and diffuse-enhanced absorption systems was ∼650 and  1380 km s−1  , respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of  Δ B = 1.8  mag and an extra  Δ E ( B − V ) = 0.44  reddening.  相似文献   

9.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

10.
The Unified Model of active galactic nuclei (AGN) predicts that the sole difference between type 1 and 2 Seyfert galaxies nuclei is the viewing angle with respect to an obscuring structure around the nucleus. High-energy photons above 20 keV are not affected by this absorption if the column is Compton thin, so their 30–100 keV spectra should be the same. However, the observed spectra at high energies appear to show a systematic difference, with type 1 Seyfert galaxies having Γ∼ 2.1 whereas type 2 Seyfert galaxies are harder with Γ∼ 1.9. We estimate the mass and the accretion rate of Seyferts detected in these high-energy samples, and show that they span a wide range in   L / L Edd  . Both black hole binary systems and AGN show a correlation between spectral softness and Eddington fraction, so these samples are probably heterogeneous, spanning a range of intrinsic spectral indices which are hidden in individual objects by poor signal-to-noise ratio. However, the mean Eddington fraction for the type 1 Seyfert galaxies is higher than for the type 2 Seyfert galaxies, so the samples are consistent with this being the origin of the softer spectra seen in type 1 Seyfert galaxies. We stress that high-energy spectra alone are not necessarily a clean test of Unification schemes, but that the intrinsic nuclear properties should also change with   L / L Edd  .  相似文献   

11.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

12.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

13.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

14.
Non-thermal emission from old supernova remnants   总被引:1,自引:0,他引:1  
We study the non-thermal emission from old shell-type supernova remnants (SNRs) on the frame of a time-dependent model. In this model, the time-dependent non-thermal spectra of both primary electrons and protons as well as secondary electron/positron (e±) pairs can be calculated numerically by taking into account the evolution of the secondary e± pairs produced from proton–proton (p–p) interactions as accelerated protons collide with the ambient matter in an SNR. The multiwavelength photon spectrum for a given SNR can be produced through leptonic processes such as electron/positron synchrotron radiation, bremsstrahlung and inverse Compton scattering as well as hadronic interaction. Our results indicate that the non-thermal emission of the secondary e± pairs is becoming more and more prominent when the SNR ages in the radiative phase because the source of the primary electrons has been cut off and the electron synchrotron energy loss is significant for a radiative SNR, whereas the secondary e± pairs can be produced continuously for a long time in the phase due to the large energy-loss time for the p–p interaction. We apply the model to two old SNRs, G8.7−0.1 and G23.3−0.3, and the predicted results can explain the observed multiwavelength photon spectra for the two sources.  相似文献   

15.
We present time-resolved spectroscopy and photometry of the cataclysmic variable (CV) SDSS J133941.11+484727.5 (SDSS 1339) which has been discovered in the Sloan Digital Sky Survey (SDSS) Data Release 4. The orbital period determined from radial velocity studies is 82.524(24) min, close to the observed period minimum. The optical spectrum of SDSS 1339 is dominated to 90 per cent by emission from the white dwarf (WD). The spectrum can be successfully reproduced by a three-component model (white dwarf, disc, secondary) with   T WD=12 500 K  for a fixed  log   g = 8.0, d = 170 pc  , and a spectral type of the secondary later than M8. The mass-transfer rate corresponding to the optical luminosity of the accretion disc is very low,  ≃ 1.7 × 10−13 M yr−1  . Optical photometry reveals a coherent variability at 641 s with an amplitude of 0.025 mag, which we interpret as non-radial pulsations of the white dwarf. In addition, a long-period photometric variation with a period of either 320 or 344 min and an amplitude of 0.025 mag is detected, which bears no apparent relation with the orbital period of the system. Similar long-period photometric signals have been found in the CVs SDSS J123813.73−033933.0, SDSS J204817.85−061044.8, GW Lib and FS Aur, but so far no working model for this behaviour is available.  相似文献   

16.
In the first part of this work, the empirical correlation of stellar surface brightness F V with ( I c− K ) broad-band colour is investigated by using a sample of stars cooler than the Sun. A bilinear correlation is found to represent well the brightness of G, K and M giant stars. The change in slope occurs at ( I c− K )∼2.1 or at about the transition from K to M spectral types. The same relationship is also investigated for dwarf stars and found to be distinctly different from that of the giants. The dwarf star correlation differs by an average of −0.4 in ( I c− K ) or by a maximum in F V of ∼−0.1, positioning it below that of the giants, with both trends tending towards convergence for the hotter stars in our sample. The flux distribution derived from the F V −( I c− K ) relationship for the giant stars, together with that derived from an F V −( V − K ) relationship and the blackbody flux distribution, is then utilized to compute synthetic light V and colour ( V − R )c, ( V − I )c and ( V − K ) curves of cool spotted stars. We investigate the effects on the amplitudes of the curves by using these F V –colour relations and by assuming the effective gravity of the spots to be lower than the gravity of the unspotted photosphere. We find that the amplitudes produced by using the F V −( I c− K ) relationship are larger than those produced by the other two brightness correlations, meaning smaller and/or warmer spots.  相似文献   

17.
We studied the radio source associated with the ultraluminous X-ray source in NGC 5408  ( L X≈ 1040 erg s−1)  . The radio spectrum is steep (index  ≈−1  ), consistent with optically thin synchrotron emission, not with flat-spectrum core emission. Its flux density (≈0.28 mJy at 4.8 GHz, at a distance of 4.8 Mpc) was the same in the March 2000 and December 2004 observations, suggesting steady emission rather than a transient outburst. However, it is orders of magnitude higher than expected from steady jets in stellar-mass microquasar. Based on its radio flux and spectral index, we suggest that the radio source is either an unusually bright supernova remnant, or, more likely, a radio lobe powered by a jet from the black hole (BH). Moreover, there is speculative evidence that the source is marginally resolved with a radius ∼30 pc. A faint H  ii region of similar size appears to coincide with the radio and X-ray sources, but its ionization mechanism remains unclear. Using a self-similar solution for the expansion of a jet-powered electron–positron plasma bubble, in the minimum-energy approximation, we show that the observed flux and (speculative) size are consistent with an average jet power  ≈ 7 × 1038 erg s−1∼ 0.1 L X∼ 0.1 L Edd  , an age ≈105 yr, a current velocity of expansion ≈80 km s−1. We briefly discuss the importance of this source as a key to understand the balance between luminosity and jet power in accreting BHs.  相似文献   

18.
We present a modified scenario of gamma-ray emission from pulsars within the framework of polar cap models. Our model incorporates the possible acceleration of electron–positron pairs created in magnetospheres, and their subsequent contribution to the gamma-ray luminosity L γ. It also reproduces the empirical trend in L γ for seven pulsars detected with Compton Gamma-Ray Observatory ( CGRO ) experiments. At the same time it avoids basic difficulties faced by theoretical models when confronted with observational constraints.   We show that the classical and millisecond pulsars form two distinct branches in the L γ— L sd diagram (where L sd is the spin-down luminosity). In particular, we explain why the millisecond pulsar J0437−4715 has not been detected with any of the CGRO instruments despite its very high position in the ranking list of spin-down fluxes (i.e. L sd/ D 2, where D is a distance). The gamma-ray luminosity predicted for this particular object is about one order of magnitude below the upper limit set by EGRET.  相似文献   

19.
We present new BeppoSAX observations of seven BL Lacertae objects selected from the 1-Jy sample plus one additional source. The collected data cover the energy range     (observer's frame), reaching ∼50 keV for one source (BL Lac). All sources characterized by a peak in their multifrequency spectra at infrared/optical energies (i.e., of the low-energy peaked BL Lac type, LBL) display a relatively flat     X-ray spectrum, which we interpret as inverse Compton emission. Four objects (two-thirds of the LBLs) show some evidence for a low-energy steepening, which is probably due to the synchrotron tail merging into the inverse Compton component around ∼     . If this were generally the case with LBLs, it would explain why the     ROSAT spectra of our sources are systematically steeper than the BeppoSAX ones     . The broad-band spectral energy distributions fully confirm this picture, and a synchrotron inverse Compton model allows us to derive the physical parameters (intrinsic power, magnetic field, etc.) of our sources. Combining our results with those obtained by BeppoSAX on BL Lacs covering a wide range of synchrotron peak frequency, ν peak, we confirm and clarify the dependence of the X-ray spectral index on ν peak originally found in ROSAT data.  相似文献   

20.
We re-analyse the ASCA Ginga X-ray data from BY Cam, a slightly asynchronous magnetic accreting white dwarf. The spectra are strongly affected by complex absorption, which we model as a continuous (power-law) distribution of covering fraction and column of neutral material. This absorption causes a smooth hardening of the spectrum below ∼ 3 keV, and is probably produced by material in the pre-shock column which overlies the X-ray emission region. The ASCA data show that the intrinsic emission from the shock is not consistent with a single-temperature plasma. Significant iron L emission coexisting with iron K shell lines from H- and He-like iron clearly shows that there is a wide range of temperatures present, as expected from a cooling shock structure. The Ginga data provide the best constraints on the maximum temperature emission in the shocked plasma, with kT max = 21+18−4 keV. Cyclotron cooling should also be important; it suppresses the highest temperature bremsstrahlung components, so the X-ray data provide only a lower limit on the mass of the white dwarf of M  ≥ 0.5 M⊙. Reflection of the multitemperature bremsstrahlung emission from the white dwarf surface is also significantly detected.   We stress the importance of modelling all these effects in order to gain a physically self-consistent picture of the X-ray spectra from polars in general and BY Cam in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号