首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SEN  GAUTAM 《Journal of Petrology》1986,27(3):627-663
Electron microprobe analyses of minerals of thirteen DeccanTrap lava flows at Mahabaleshwar have been carried out in thepresent study. All of these flows have tholeiitic bulk compositionsand all, except one (represented by MB-81-17 of Mahoney et al.,1982) contain olivine, plagioclase, two pyroxenes, and Fe-Tioxide minerals. Olivine and plagioclase appear as distinct phenocrystsin all but one flow, and Ca-rich pyroxene joins as a phenocrystphase in the younger flows. Pigeonite and Fe-Ti oxide minerals(titanomagnetite and ilmenite) occur in the groundmass. Olivineoccurs as both groundmass and phenocryst phase in MB-81-17 (whichis the only flow without low-Ca pyroxene phase); in all otherflows olivine appears only as phenocryst phase. In all but one(MB-81-17) flow olivine is completely altered. MB-81-17 olivinegrains are only partly altered, and in this rock the cores ofphenocrysts are rounded and have a composition of Fo77 whereastheir euhedral rims have a composition around Fo67. The groundmassolivine grains in MB-81-17 are Fo41–32. Substantial Fe-enrichmentand zoning trends are shown by the pyroxenes in individual rocks.The cores of Ca-rich pyroxene phenocrysts of some of the flowshave as much as 4 wt. per cent A12O3 and may have crystallizedat higher (crustal) pressures. Pigeonite thermometry (Ishii,1975) suggests an average of 1050?C for crystallization of thegroundmass pigeonite (eruption temperature?). Fe-Ti oxide mineralsare mostly altered in the older flows. In the younger flows,coexisting unaltered titanomagnetite and ilmenite yield maximumtemperature estimates for the crystallization of these phaseof about 1025?C and an oxygen fugacity of 10–11.5 atm.The T-fo2 path followed by these flows seems to have been consistentlysomewhat lower than that defined by the 1 atm. fayalite-magnetitequartz curve. All of the lavas examined have experienced extensivefractional crystallization of olivine and some clinopyroxeneat relatively higher pressures. These lavas were saturated orclose to being saturated with olivine+plagioclase+clinopyroxeneduring eruption. Plagioclase accumulation, although it appearsto have occurred, has not been significant. It is suggestedthat MB-81-17 magma was contaminated by a calcite-rich rock(limestone?) whereas the lower Group 1 magmas may have beenselectively contaminated by quartz-bearing contaminant. Alternately,parental magma of MB-81-1 (with the highest Mg-number and 8= -16) may have been produced in the upper mantle into whichminor masses of old crust was well mixed. Magma mixing, crystalfractionation, and contamination processes of Mahabaleshwarbasalts and possible genetic relationships with other DeccanTrap lavas are discussed.  相似文献   

2.
Detailed stratigraphy based on whole-rock geochemistry is presentedfor a 1200 m sequence of basaltic lava flows in the WesternGhats escarpment near Mahabaleshwar. Five separate sectionsare used to define a regional dip of approximately 0–5?to the SW. From the base upwards the following formations aredescribed: Bushe, Lower Poladpur, Upper Poladpur, Ambenali,and Mahabaleshwar. Inter-formation boundaries, with the exceptionof the Upper Poladpur-Ambenali, are sharp, and are particularlywell defined by breaks in Sr-isotopic composition. Two of theformation bases are marked by abnormally mafic flows—the Kamshedi picrite horizon at the base of the Upper Poladpur,and the Kelghar mafic unit at the base of the Mahabaleshwar.Major element compositions are controlled throughout largelyby the degree of gabbro fractionation. Intense crustal contaminationfurther modifies compositions in the lower part of the sequence(Bushe-Upper Poladpur) and has strong effects on trace elementsand Sr-isotopes. Contamination decreases up-sequence leadingto the comparatively uniform Ambenali rocks. The MahabaleshwarFormation represents a change towards magmatism generated inan enriched mantle with many characteristics similar to thoseof oceanic island basalts. The geochemical discussion dealsmainly with two well-developed mixing lines, one between Ambenalimagmas and granitic crust, the other between ambenali magmasand the products of the postulated enriched mantle source. Thedetailed stratigraphic sequences strongly support the RTF (replenished,tapped, fractionated) magma chamber model of O‘Hara &Mathews(1981) and the idea of periodical replenishment by picriticmagmas (e. g. Huppert & Sparks, 1980b). This is believedto be the first demonstration of such processes operating ona large scale in a continental basalt province.  相似文献   

3.
Fortyone successive flows of the Deccan Traps have been investigated at Mahabaleshwar, India, and the rocks from the twenty two different flows have been newly analysed. All of these basalts are silica-saturated tholeiites; and the series shows minor gradual variation with the order of eruption. These seem to be a result of magmatic differentiation somewhat similar to that shown in the Skaergaard intrusion.  相似文献   

4.
Earth Observation with large suite of sensors and with capabilities to address natural resources at multiple scales has proven to be a critical resource in setting conservation priorities of a region. The role of earth observation data was recognized towards achieving international biodiversity targets by 2020. Ecosystem irreplaceability and ecosystem vulnerability are two concepts key to understanding and preparing conservation priority maps. This study presents spatial conservation prioritization analysis for forests of ‘Western Ghats biodiversity hotspot’. Earth observation data products have been used for prioritization of areas of irreplaceability and vulnerability that are significant for conservation planning. The spatial surrogates of biodiversity in terms of very dense forest, biological richness, intactness and rarity of habitat are analyzed for evaluation of ecosystem irreplaceability. Fragmentation, forest fires, plant invasion and disturbance index are surrogates included for spatial analysis of ecosystem vulnerability. Vegetation type wise analysis indicates dry deciduous forests are under high vulnerability, followed by moist deciduous forests. The high concentration of irreplaceability is observed in Shola followed by wet evergreen forests and semi-evergreen forests. Spatial prioritization approach has identified about 18% of the forest area as irreplaceable which represents overlapped area of very dense forest, shola, intact forest and high biological richness. We observed that the overlap of forest areas of irreplaceability with vulnerability in southern Western Ghats, which needs high priority of conservation. This study is the first of its kind wherein multi-source earth observation data has been analysed to examine the quantitative criteria at regional level in Western Ghats.  相似文献   

5.
Pelitic rocks were thermally metamorphosed at the contact of the Chimakurthy mafic-ultramafic igneous complex, Eastern Ghats Belt, India. The rocks show progressive change in mineralogy from biotite-sillimanite-quartz-garnet-K-feldspar (association I, 150 m from the intrusive contact) to garnet-spinel-cordierite-K-feldspar-sillimanite (association II, 20–30 m from the intrusive contact) to cordierite-K-feldspar-(cordierite-orthopyroxene-K-feldspar symplectite after osumilite)-spinel-FeTiAl oxides with/without garnet (associations III and IV, 5 m from the intrusive contact), and finally to spinel-orthopyroxene-cordierite-K-feldspar (association V, xenoliths). Oxide mineral clots in associations III and IV resemble emery-type rocks. Initial mineral reactions involved biotite-dehydration melting with partial segregation of the melt. Down-temperature mineral reactions were largely diffusion controlled and preservation of symplectitic and coronitic textures in microdomains is common. Interpretation of reaction textures in relevant petrogenetic grids for the sytems KFMASH and FMAS and combined with geothermobarometry suggest that the pelitic rocks were thermally metamorphosed at c. 6 kbar pressure along a heating-cooling trajectory within the temperature interval between c. 750 °C and c. 1000 °C. Received: 20 October 1996 / Accepted: 17 June 1997  相似文献   

6.
Basaltic and basaltic andesitic flows have been identified from the Chhotaudepur area in the Deccan Large Igneous Province. The \(\hbox {SiO}_{2}\) content of these flows varies from 46.7 to 53.7 wt%. None of the samples have primary magma signatures as they exhibit low Mg# (0.42–0.68), Ni (4.8–33.4 ppm) and Cr (33.08–143.06 ppm). Highly variable concentrations of the LILE [Rb (2–74 ppm), Ba (52–351 ppm), Cs (0.1–1 ppm) and Sr (273–745 ppm)] and relatively enriched LREE are also noticed. The coherent chondrite normalized REE diagram and primitive mantle normalized multi-element diagram suggests a consanguinity among the flows. Low (Nb/Th)\(_{\mathrm{PM}}\) (0.30–1.09), high (Th/Yb)\(_{\mathrm{PM}}\) (3.09–16.58) ratios and marked variations in Rb concentration (2.4–74.11 ppm) with variable La/Yb (5.5–23.7) ratios suggests that magmas in the Chhotaudepur region were assimilated by the crustal components. The elevated Th/Ta and La/Yb relation further indicate concurrent assimilation and fractional crystallization process was involved in the genesis of the flows. Assimilation and fractional crystallization modelling of the flows was carried out with 20% olivine, 25% clinopyroxene, 45% plagioclase and 10% titano-magnetite as fractionating minerals and upper continental crust as the assimilant. The results reveal that all the flows were modified by AFC process.  相似文献   

7.
Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four different sectors, viz., (i) Bargona–Gadarwara (BG) sector (ii) Shikarpur–Linga (SL) sector (iii) Arjunvari–Survir Hill (AS) sector and (iv) Kukrachiman–Morand Hill (KM) sector. A three-tier classification scheme has been adopted for the characterization and classification of individual lava flows. Each lava flow consists of a Lower Colonnade Zone (LCZ) overlain by the Entablature Zone (EZ) and Upper Colonnade Zone (UCZ). The LCZ and UCZ grade into a distinct/indistinct Lower Vesicular Zone (LVZ) and Upper Vesicular Zone (UVZ), respectively. The LCZ and UCZ of the flows are characterized by columnar joints while the EZ is marked by multi-directional hackly jointing. The geometry of different joint patterns corresponds to different styles of cooling during solidification of lava flows. Detailed petrographic studies of the investigated lava flows reveal inequigranular phenocrystal basalts characterized by development of phenocrystal phases including plagioclase, clinopyroxene and olivine, whereas groundmass composition is marked by tiny plagioclase, clinopyroxene, opaque mineral and glass. Electron microprobe analyses indicate that the olivine has a wide range ∼Fo22 to Fo66 revealing a wide spectrum of compositional variation. Pyroxene compositions are distinctly designated as Quad pyroxenes. Phenocrystal pyroxenes are mostly diopsidic, while the groundmass pyroxenes mainly correspond to augite with a minor pigeonite component. Pyroxene phenocrysts are characterized by a prominent Ti-enrichment. Phenocrystal plagioclase grains are calcic (An52.7–An72.9), whereas groundmass plagioclase are relatively sodic (An39.2–An61.6). Groundmass opaque minerals are characteristically found to be Ti–magnetite/ilmenite/pyrophanite. Pyroxene thermometry reveals a temperature span of 850°C to 1280°C for the studied lavas while olivine–clinopyroxene thermometry yields a temperature range from 1040°–1160°C. The variation of temperature for the lava flows is ascribed to their normal cooling history after eruption.  相似文献   

8.
9.
Abstraction of groundwater resources is increasing over the years to meet its ever-increasing demand for industrial, agricultural and domestic purposes throughout the world. The scenario is even worse in the east flowing rivers of the Western Ghats, where the demand of water is high under changing climatic conditions. Such situation may affect the groundwater resources of the river basin on a long run. The aim of the present study is to characterize the geochemistry of groundwater in Tamiraparani sub-basin through geochemical modeling and deduce the ionic interactions with the aid of geostatistical and multivariate statistical techniques. A total of 40 groundwater samples from shallow aquifers were collected randomly throughout the sub-basin for assessing its physicochemical parameters, which include physical properties of the water, major ions and nutrients. Two major hydrogeochemical facies were identified such as mixed Ca-Mg-Cl and Ca-HCO3 groups. The nutrients derived from agricultural runoff, urban discharge and organic decomposition alters the nutrient level in the groundwater. The dissolution/precipitation of minerals such as calcite and dolomite controls the chemical constituents of the groundwater. The multivariate statistical analysis indicates that natural weathering of source rocks is the main contributors of ions in the groundwater followed by anthropogenic activities such as agricultural practices and urbanization. The insights obtained from this study can be helpful for sustainable groundwater management and long-term monitoring studies.  相似文献   

10.
11.
A late-stage rift-related tholeiite-alkalic suite of igneous intrusions cut the Deccan Traps lavas at the western Indian continental margin. The suite comprises intrusives that can be grouped into ten lithotypes on the basis of their mutual relationships. Tholeiitic types predate the alkaline rocks and greatly predominate, however, the alkaline members exhibit more diversity in mineralogy and chemistry, and are amongst the rare magmatic rocks from the Deccan that host both mantle and lower crustal xenoliths. The mineralogy of most rock types is dominated by clinopyroxene. The diversity of the alkaline rocks could be mainly accounted for by fractional crystallization and mixing between evolved and primitive melts under varying P-T conditions. Sodic and potassic lamprophyres are amongst the most primitive samples with high Mg #, FeO/MgO < 1, high Cr and also with relatively high Ba, Sr, Zr and Nb. They are the most deeply derived magmas within the Deccan Traps as is evident from the mantle and lower crustal xenoliths entrained by them. They possibly represent low degree melts of incompatible element-enriched mantle source rocks. The nephelinites are strongly porphyritic and despite their high Mg #s can be regarded as evolved magmas that have been responsible for the formation of the tephriphonolite daughter. The nephelinites have undergone contamination by lower crustal granulites. The composite intrusions of microdiorites with their complexly zoned mineralogy dominated by plagioclase and amphiboles/micas represent hybrid rocks that have resulted from mixing between tholeiitic and trachytic melts partly at depth and partly at shallow crustal levels.  相似文献   

12.
The Raka ophiolite is located in the middle section of the plate suture zone in the Yarlung Zangbo region, Tibet. It is suggested that the genesis of the ophiolite is similar to that of non-typic MORB in a marginal ocean basin through field geological investigation, lithogeochemical analysis and synthetical comparison. It is concluded that the ophiolite in this region may be relics of the subducted oceanic lithosphere in the Neo-Tethys period. This project was financially supported by the National Natural Science Foundation of China (No. 49772109, No. 49472100) and the Key Projects for the “Eighth-Five Year Plan” period in the Tibet Autonomous Region.  相似文献   

13.
Heavy rainfall triggered landslides are on the rise along the Western Ghats making it a matter of priority to identify landslide-prone areas well in advance. The present effort is aimed at identifying landslide susceptible villages (LSV) around the Kalsubai region of Deccan volcanic province (DVP), Maharashtra, India from 8 weighted landslide parameters- rainfall, slope, lithology, land use and land cover (LULC), soil properties, relative relief, aspect and lineament. These parameters were combined with advanced remote sensing (RS) data and processed in geographical information system (GIS) as well as in image processing software, which are an integral part of geospatial techniques. Out of the total 59 villages, the study identified 9 villages are situated in very high, 13 in high, 12 in moderate, 11 in low and 14 in very low risk zones. Our data reveals incessant heavy rains and steep slopes are the dominant factors in triggering landslides, exacerbated by anthropogenic activity prevalent in the study area. The spatial and non-spatial database created will help to take effective steps in preventing and/or mitigating landslide disasters in the study area. The methodology can be applied to identify other landslide prone areas in a cost effective way.  相似文献   

14.
Available literature reveals that little work has been done on the origin of springs in a basaltic terrain. Close examination of such springs in about 2,000 km2 of the upper Koyna River basin in the Deccan Trap country of the Western Ghats (hills), India, reveals that their origins are dependent on the lithologic character of different basaltic flow units and the existing physiography. Although rainfall, its seasonality and areas of recharge, play vital roles in the recharge of these springs, their yields are also controlled by lithological variations and hydraulic characteristics of their source-aquifers. Chemical concentrations of these springs are heavily dependent on the lithological compositions of the source-aquifers and the residence time of groundwater in these aquifers. Currently, basaltic springs are classified with those issuing from other terrains. However, because the emergence of groundwater in the form of springs is largely controlled by the lithology and the resulting water-bearing properties of the formations, a new classification scheme is proposed that classifies the springs on the basis of their source-aquifers. While tapping springs for drinking/irrigation purposes, it must be remembered that they also sustain thousands of other life forms vital to a balanced ecosystem. Changes in the uses of these springs may also affect other human communities downstream. Therefore, before developing spring flow, a trade-off must be made considering local needs and downstream users. Emphasizing only local human needs may lead to severe intercommunity conflict and negative environmental consequences. Electronic Publication  相似文献   

15.
The objective of this study is to apply and test a simple parametric water balance model for prediction of soil moisture regime in the presence of vegetation. The intention was to evaluate the differences in model parameterization and performance when applied to small watersheds under three different types of land covers (Acacia, degraded forest and natural forest). The watersheds selected for this purpose are located in the sub-humid climate within the Western Ghats, Karnataka, India. Model calibration and validation were performed using a dataset comprising depth-averaged soil moisture content measurements made at weekly time steps from October 2004 to December 2008. In addition to this, a sensitivity analysis was carried out with respect to the water-holding capacity of the soils with the aim of explaining the suitability and adaptation of exotic vegetation types under the prevailing climatic conditions. Results indicated reasonably good performance of the model in simulating the pattern and magnitude of weekly average soil moisture content in 150 cm deep soil layer under all three land covers. This study demonstrates that a simple, robust and parametrically parsimonious model is capable of simulating the temporal dynamics of soil moisture content under distinctly different land covers. Also, results of sensitivity analysis revealed that exotic plant species such as Acacia have adapted themselves effectively to the local climate.  相似文献   

16.
17.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

18.
The Western Ghats plays a pivotal role in determining the hydrological and hydroclimatic regime of Peninsular India. The mountainous catchments of the Ghats are the primary contributors of flow in the rivers that sustains the life and agricultural productivity in the area. Although many studies have been conducted in the past decades to understand long term trends in the meteorological and hydrological variables of major river basins, not much attention have been made to unfold the relationship existing among rainfall and river hydrology of natural drainages on either side of the Western Ghats which host one of the unique biodiversity hotspots across the world. Therefore, an attempt has been made in this paper to examine the short term (last three decades) changes in the rainfall pattern and its influence on the hydrological characteristics of some of the important rivers draining the southern Western Ghats as a case study. The short term, annual and seasonal trends in the rainfall, and its variability and discharge were analyzed using Mann-Kendall test and Sen’s estimator of slope. The study showed a decreasing trend in rainfall in the southwest monsoon while a reverse trend is noticed in northeast monsoon. Correspondingly, the discharge of the west and east flowing rivers also showed a declining trend in the southwest monsoon season. The runoff coefficient also followed the trends in the discharge. The runoff coefficient of the Periyar river showed a decreasing trend, whereas the Cauvery river exhibited an increasing trend. A high-resolution analysis of rainfall data revealed that the number of moderate rainfall events showed a decreasing trend throughout the southern Western Ghats, whereas the high intensity rainfall events showed an opposite trend. The decline in groundwater level in the areas which recorded an increase in high intensity rainfall events and decrease in moderate rainfall events showed that the groundwater recharge process is significantly affected by changes in the rainfall pattern of the area.  相似文献   

19.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

20.
The Western Ghats (WG) is one of the Great Escarpments of the world that developed and persisted for the last ~60 Ma at the passive Western Continental Margin of India (WCMI). Like many such escarpments, the origin and persistence of the WG cannot be explained by a single mechanism, either lithosphere-asthenosphere or surficial processes, and hence, these are debated. Here I suggest a unified multistage model for the evolution of WG based on the available geophysical and geological data, and link its origin and persistence through possible underplating and detachmentcontrolled mid-crustal ductile flow with the characteristics of the Deccan plateau and the offshore region. The implications of the model for lithosphere-asthenosphere dynamics of the Deccan plateau and Stable Continental Region (SCR) seismicity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号