首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the’true’ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.  相似文献   

2.
This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.  相似文献   

3.
In the present study, an attempt is made to assess the atmospheric boundary-layer (ABL) depth over an urban area, as derived from different ABL schemes employed by the mesoscale model MM5. Furthermore, the relationship of the mixing height, as depicted by the measurements, to the calculated ABL depth or other features of the ABL structure, is also examined. In particular, the diurnal evolution of ABL depth is examined over the greater Athens area, employing four different ABL schemes plus a modified version, whereby urban features are considered. Measurements for two selected days, when convective conditions prevailed and a strong sea-breeze cell developed, were used for comparison. It was found that the calculated eddy viscosity profile seems to better indicate the mixing height in both cases, where either a deep convective boundary layer develops, or a more confined internal boundary layer is formed. For the urban scheme, the incorporation of both anthropogenic and storage heat release provides promising results for urban applications.  相似文献   

4.
Higher-order moments, minima and maxima of turbulent temperature and water vapour mixing ratio probability density functions measured with an eddy-covariance system near the ground were related to each other and to vertical boundary-layer profiles of the same scalars obtained through airborne soundings. The dependence of kurtosis on squared skewness showed a kurtosis intercept below the Gaussian expectation, suggesting a compression of the probability density function by the presence of natural boundaries. This hypothesis was corroborated by comparing actual minima and maxima of turbulent fluctuations to estimates obtained from the first four sample moments by fitting a four-parameter beta distribution. The most sharply defined boundaries were found for the minima of temperature datasets during the day, indicating that negative temperature fluctuations at the sensor are limited by the availability of lower temperatures in the boundary layer. By comparison to vertical profiles, it could be verified that the turbulent minimum of temperature near the ground is close to the minimum of potential temperature in the boundary layer. The turbulent minimum of water vapour mixing ratio was found to be equal to the mixing ratio at a height above the minimum of the temperature profile. This height roughly agrees with the top of the non-local unstable domain according to bulk Richardson number profiles. We conclude that turbulence statistics measured near the surface cannot be solely explained by local effects, but contain information about the whole boundary layer including the entrainment zone.  相似文献   

5.
使用1998—2016年大西洋40个飓风2 032个GPS下投式探空仪观测数据,以距离海岸线300 km为界分为近海和远洋两组,利用合成分析方法探讨了飓风边界层特征高度的差异。边界层特征高度的定义方法包括最大切向风高度、入流层高度、混合层高度和理查森数法高度。对比分析不同定义方法下近海和远洋边界层高度,结果表明:根据最大切向风和入流层强度定义的边界层高度,近海边界层高度低于远洋边界层高度,且近海边界层高度随径向增加至2倍最大风速半径后趋于稳定;基于混合层定义的边界层高度明显低于动力边界层高度,且近海与远洋混合边界层特征高度无明显差异;近海理查森数边界层高度在最大风速半径内与远洋的无明显差异,而在最大风速半径外略高于远洋的。  相似文献   

6.
We discuss the structure and evolution of a cloud-free atmospheric boundary layer (ABL) during daytime over land, starting from a shallow ABL at sunrise and developing into a deep ABL with strong convection in the afternoon. The structure of the turbulence in the lower half of a convective ABL capped by an inversion is reasonably well understood. Less is known about the details of the turbulence in higher regions affected by entrainment, because of the difficulty in taking turbulence measurements there. For the evolution in time of the height of the ABL and its mean potential temperature mixed-layer models have been developed that give satisfactory agreement with observations. It has been shown that for many practical applications accurate knowledge of forcing functions and boundary conditions is more important than a refinement of the entrainment hypothesis. Observations show that the assumption of well-mixedness of first-order moments of conservative variables is not valid for all quantities. A simple similarity relation for the inclusion of the effect of entrainment on the shape of the vertical profiles is given.  相似文献   

7.
The annual variation in planetary boundary layer (PBL) height is determined from the profiles of conserved thermodynamic variables, i.e., virtual potential temperature ?? v and equivalent potential temperature ?? e, using radiosonde data at per-humid climate region, Ranchi (23°42??N, 85°33??E, 610?m asl) and semi-arid region, Anand (23°35??N, 72°55??E, 45.1?m asl), India. Of all the variables, the ?? v profile seems to provide the most reasonable estimate of the PBL height. This has been supplemented by T-Phi gram analysis for specific days. It has been found that in winter the height of boundary layer is very low due to subsidence and radiational cooling, while pre-monsoon months exhibit the most variable convection. It may be inferred that synoptic conditions accompanied by a variety of weather phenomena such as thunderstorms, onset and withdrawal of monsoons, etc. control the ABL over Ranchi, while daytime solar insolation and nighttime radiative cooling mainly control the ABL over Anand.  相似文献   

8.
The wind speed shear in the case of stable stratification in the linear part of the profile spreading high above the surface layer of constant flows is studied using the data of long-term sodar measurements in the atmospheric boundary layer. The wind speed shear in this part remains almost invariable during several hours at the significant change in parameters of the Monin-Obukhov theory. The length of this linear part can be associated with the layer of the critical Richardson number. In the case of the pronounced temperature inversion (with the positive gradient of more than 1°C per 100 m), the wind speed profile is close to the linear function in the most part of the nocturnal mixing layer. Proposed is a scale characterizing the height of the surface layer of constant flows.  相似文献   

9.
The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using ‘flow generators’ to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.  相似文献   

10.
The height of the atmospheric boundary layer (ABL) obtained with lidar and radiosondes is compared for a data set of 43 noon (12.00 GMT) cases in 1984. The data were selected to represent the synoptic circulation types appropriately. Lidar vertical profiles at 1064 nm were used to obtain three estimates for the ABL height (h lid), based on the first gradient in the back-scatter profile, namely, at the beginning, middle and top of the gradient. The boundary-layer height obtained with the radiosondes (h s) was determined with the dry-parcel-intersection method in unstable conditions. As a first guess for near-neutral and stable conditions, the height of the first significant level in the potential temperature profile was taken. Overall, the boundary-layer thickness estimates agree surprisingly well (regression lineh lidb=hs:cc.=0.93 and the standard error=121 m). However, in 10% of the cases, the lidar estimate was significantly lower (difference>400 m) than the routinely inferredh s. These outliers are discussed separately. For stable conditions, an estimate of ABL height (h N) is also made based on the friction velocity and the Brunt-Väisälä frequency. The agreement betweenh Nandh lidbis good. Discrepancies between the two methods are caused by:
  1. rapid growth of the boundary layer arround the measurement time;
  2. the presence of a deep entrainment layer leading to a large zone in which quantities are not well mixed;
  3. a large systematic error of 100–200 m in the estimate of boundary-layer height obtained from the radiosonde due to the way that profiles are recorded, as a series of significant points.
  相似文献   

11.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   

12.
A complex marine experiment was conducted in autumn 1991 on the research vessel Dmitry Mendelev in association with the Atlantic Stratocumulus Transition Experiment (ASTEX). A three-axis Doppler sodar designed at the Institute of Atmospheric Physics, Moscow, was used in this experiment. Total observation time was about 770 hours from 6 October to 23 November. Besides facsimile records illustrating spatial and temporal structure of the turbulence distribution in the atmospheric boundary layer (ABL), routine quantitative measurements of profiles of wind and echo-signal strength were taken. Some main characteristics of the ABL behavior over the ocean were revealed through an analysis of these data as well as the results of other kinds of measurements. An important peculiarity of the ABL observed between the Canary Islands and the Azores was the presence of diurnal variation of convective turbulence strength having a maximum between 04:00 and 07:00 LT. A similar diurnal variation was observed for low-level cloud cover. Occurrence of various types of thermal stratification and their diurnal variation were obtained. Comparison of elevated stable layers and low-level cumulus showed that the lower boundary of clouds correlates well with the height of the bottom of elevated inversion layers (at heights of 200–600 m). Canary and Cabo Verde observations showed that islands strongly affect the ABL structure. The strong effect of a surface water temperature gradient on the ABL stability was observed when crossing the Canary, Azores, and Labrador currents and the Gulf Stream.  相似文献   

13.
An experimental campaign, Study of the Atmospheric Boundary Layer Environmental at Dome C, was held during 2005 at the French-Italian station of Concordia at Dome C. Ground-based remote sensors, as well as in situ instrumentation, were used during the experimental campaign. The measurements allowed the direct estimation of the polar atmospheric boundary-layer height and the test of several parametrizations for the unstable and stable boundary layers. During the months of January and February, weak convection was observed while, during the polar night, a long-lived stable boundary layer occurred continuously. Under unstable stratification the mixing-layer height was determined using the sodar backscattered echoes and potential temperature profiles. The two estimations are highly correlated, with the mixing height ranging between 30 and 350 m. A simple prognostic one-dimensional model was used to estimate the convective mixing-layer height, with the correlation coefficient between observations and model results being 0.66. The boundary-layer height under stable conditions was estimated from radiosounding profiles as the height where the critical Richardson number is reached; values between 10 and 150 m were found. A visual inspection of potential temperature profiles was also used as further confirmation of the experimental height; the results of the two methods are in good agreement. Six parametrizations from the literature for the stable boundary-layer height were tested. Only the parametrization that considers the long-lived stable boundary layer and takes into account the interaction of the stable layer with the free atmosphere is in agreement with the observations.  相似文献   

14.
Profile data from simultaneous sodar and tethered balloon measurements have been analyzed with respect to the complex structure of the atmospheric boundary layer in the Upper Rhine Valley. Special attention was focused on ozone concentration profiles measured with a novel lightweight ozone sensor at the balloon. In general, good agreement was found between the signature of the ozone concentration profiles and special features of the backscattered sound intensity profiles. This allows reliable estimation of the mixing height from the sodar data even in a complex stable ABL, except for very shallow mixing layers (below about 75 m), which could not be detected by the sodar.  相似文献   

15.
A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.  相似文献   

16.
The surface layer of an atmospheric boundary layer (ABL) is most accessible to field measurements and hence its ensemble-mean structure has been well established. The Kansas field measurements were the first detailed study of this layer, providing numerous benchmark statistical profiles for a wide range of stability states. Large-eddy simulation (LES), in contrast, is most suitable for studying the mixed layer of the ABL where the energy-containing range of the vertical velocity field is well resolved. In the surface layer, typical large-eddy simulations barely resolve the energy-containing vertical-velocity fields and hence do not provide sufficient data for a detailed analysis.We carried out a nested-mesh simulation of a moderately convective ABL (-zi/L = 8) in which the lower 6% of the boundary layer had an effective grid resolution of 5123. We analyze the LES fields above the 6th vertical grid level (z = 23 m) where the vertical velocity field has a well formed inertial subrange, for a detailed comparison with the Kansas results. Various terms in the budgets of turbulent kinetic energy, temperature variance, Reynolds stress, temperature flux, and some higher order moments are compared. The agreement is generally quite good; however, we do observe certain discrepancies, particularly in the terms involving pressure fluctuations.  相似文献   

17.
A diagnostic model for the determination of similarity profiles of turbulence and mean-wind gradient in the planetary boundary layer is developed. Vertical profiles of a turbulence length scale and the flux Richardson number are formulated through the extension of the relationships for the constant flux layer. These profiles together with a turbulence energy equation and a similarity profile empirically determined for heat or momentum flux are used to compute the turbulence energy. Relationships previously derived from a turbulence closure model are used to compute second moments of turbulence.  相似文献   

18.
地基微波辐射计探测大气边界层高度方法   总被引:4,自引:3,他引:1       下载免费PDF全文
采用2013年中国科学院大气物理研究所香河大气综合观测试验站的地基微波辐射计和激光雷达观测数据,以激光雷达探测的大气边界层高度为参考,分别利用非线性神经网络和多元线性回归方法建立微波亮温直接反演大气边界层高度的算法,并对比两种方法的反演能力, 同时分析非线性神经网络算法在不同时段及不同天气状况下反演结果的差异。结果表明:非线性神经网络算法的反演能力优于多元线性回归算法,其反演结果与激光雷达探测的大气边界层高度有较好一致性,冬、春季的相关系数达到0.83,反演精度比线性回归算法约高26%;对于不同时段和不同天气条件,春季的反演结果最好,晴空的反演结果好于云天; 四季和不同天气状况的划分也有利于提高反演精度。  相似文献   

19.
The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m–3 and from 378 to 442 μg m–3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s–1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.  相似文献   

20.
Multiaxis differential absorption spectroscopy(MAX-DOAS) is a newly developed advanced vertical profile detection method, but the vertical nitrogen dioxide(NO_2) profiles measured by MAX-DOAS have not yet been fully verified. In this study, we perform MAX-DOAS and tower gradient observations to simultaneously acquire tropospheric NO_2 observations in the Beijing urban area from 1 April to 31 May 2019. The average values of the tropospheric NO_2 vertical column densities measured by MAX-DOAS and the tropospheric monitoring instrument are 15.8 × 10~(15) and 12.4 × 10~(15) molecules cm~(-2), respectively, and the correlation coefficient R reaches 0.87. The MAX-DOAS measurements are highly consistent with the tower-based in situ measurements, and the correlation coefficients R from the ground to the upper air are 0.89(60 m), 0.87(160 m), and 0.76(280 m). MAX-DOAS accurately measures the trend of NO_2 vertical profile changes,although a large underestimation occurs by a factor of two. By analyzing the NO_2 vertical profile, the NO_2 concentration reveals an exponential decrease with height. The NO_2 vertical profile also coincides with the evolution of the boundary layer height. The study shows that the NO_2 over Beijing mainly originates from local sources and occurs in the boundary layer, and its vertical evolution pattern has an important guiding significance to better understand nitrate production and ozone pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号