共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiang Shu Mariush W. Kemblowski Mac McKee 《Stochastic Environmental Research and Risk Assessment (SERRA)》2005,19(5):361-374
Data assimilation method provides a framework to decrease the uncertainty of hydrological modeling by sequentially incorporating
observations into numerical model. Such a process involves estimating statistical moments of different order based on the
evolution of conditional probability distribution function. Because of the nonlinearity of many hydrological dynamics, explicit
and analytical solutions for moments of state distribution are often impossible. Evensen [J Geophys Res 99(c5): 10143–10162
(1994)] introduced Ensemble Kalman Filtering (EnKF) method to address such problems. We test and evaluate the performance
of EnKF in fusing model predictions and observations for a saturated–unsaturated integral-balance subsurface model. We find
EnKF improve the model predictions, and also we conclude a good estimate of state variance is essential for the success of
EnKF. 相似文献
2.
Evensen (2003) presents a modification of the Ensemble Kalman Filter (EnKF), in which the observation-error and background-error covariance matrices are both represented by ensembles, in contrast to the usual practice, where only the background error is so represented. It is shown that this modification can cause the ensemble to collapse to a single member, in the common situation where the number of observations is more than twice the number of ensemble members, and to be rank-deficient when the number of observations is greater than or equal to the ensemble size. It is also shown that some further modifications to the scheme, presented by Evensen as offering numerical efficiencies, can prevent this collapse. However, these latter modifications are shown in some simple numerical examples to require tuning to produce acceptable results, which are nevertheless inferior to those of the standard EnKF.Acknowledgements The author acknowledges useful discussions with Peter Steinle, and other participants at the EnKF workshop held in BMRC in November, 2003. 相似文献
3.
The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.Responsible Editor: Jörg-Olaf Wolff 相似文献
4.
The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time‐lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real‐time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. 相似文献
5.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot‐North (TEAD‐N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF‐based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well‐calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging‐based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. 相似文献
6.
The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and
real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale
numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in
parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using
the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies.
The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously
improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical
models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial
and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations
and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble
members improves the analyses consistently. 相似文献
7.
8.
Traditional Ensemble Kalman Filter (EnKF) data assimilation requires computationally intensive Monte Carlo (MC) sampling, which suffers from filter inbreeding unless the number of simulations is large. Recently we proposed an alternative EnKF groundwater-data assimilation method that obviates the need for sampling and is free of inbreeding issues. In our new approach, theoretical ensemble moments are approximated directly by solving a system of corresponding stochastic groundwater flow equations. Like MC-based EnKF, our moment equations (ME) approach allows Bayesian updating of system states and parameters in real-time as new data become available. Here we compare the performances and accuracies of the two approaches on two-dimensional transient groundwater flow toward a well pumping water in a synthetic, randomly heterogeneous confined aquifer subject to prescribed head and flux boundary conditions. 相似文献
9.
Campos Ricardo Martins Alves Jose-Henrique G.M. Penny Stephen G. Krasnopolsky Vladimir 《Ocean Dynamics》2020,70(3):405-419
Ocean Dynamics - Forecasts of 10-m wind (U10) and significant wave height (Hs) from the National Centers for Environmental Prediction (NCEP) Ensemble Forecast System are evaluated using altimeter... 相似文献
10.
A new circulation model of the western North Pacific Ocean based on the parallelized version of the Princeton Ocean Model and incorporating the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme has been developed. The new model assimilates satellite data and is tested for the period January 1 to April 3, 2012 initialized from a 24-year simulation to estimate the ocean state focusing in the South China Sea (SCS). Model results are compared against estimates based on the optimum interpolation (OI) assimilation scheme and are validated against independent Argo float and transport data to assess model skills. LETKF provides improved estimates of the western North Pacific Ocean state including transports through various straits in the SCS. In the Luzon Strait, the model confirms, for the first time, the three-layer transport structure previously deduced in the literature from sparse observations: westward in the upper and lower layers and eastward in the middle layer. This structure is shown to be robust, and the related dynamics are analyzed using the results of a long-term (18 years) unassimilated North Pacific Ocean model. Potential vorticity and mass conservations suggest a basin-wide cyclonic circulation in the upper layer of the SCS (z?>??570 m), an anticyclonic circulation in the middle layer (?570 m?≥?z?>??2,000 m), and, in the abyssal basin (<?2,000 m), the circulation is cyclonic in the north and anticyclonic in the south. The cyclone–anticyclone abyssal circulation is confirmed and explained using a deep-layer reduced-gravity model as being caused by overflow over the deep sill of the Luzon Strait, coupled with intense, localized upwelling west of the strait. 相似文献
11.
The Nash model was used for application of the Kalman filter. The state vector of the rainfall–runoff system was constituted by the IUH (instantaneous unit hydrograph) estimated by the Nash model and the runoff estimated by the Nash model using the Kalman filter. The initial values of the state vector were assumed as the average of 10% of the IUH peak values and the initial runoff estimated from the average IUH. The Nash model using the Kalman filter with a recursive algorithm accurately predicted runoff from a basin in Korea. The filter allowed the IUH to vary in time, increased the accuracy of the Nash model and reduced physical uncertainty of the rainfall–runoff process in the river basin. © 1998 John Wiley & Sons, Ltd. 相似文献
12.
13.
Annette Eicker Maike Schumacher Jürgen Kusche Petra Döll Hannes Müller Schmied 《Surveys in Geophysics》2014,35(6):1285-1309
We introduce a new ensemble-based Kalman filter approach to assimilate GRACE satellite gravity data into the WaterGAP Global Hydrology Model. The approach (1) enables the use of the spatial resolution provided by GRACE by including the satellite observations as a gridded data product, (2) accounts for the complex spatial GRACE error correlation pattern by rigorous error propagation from the monthly GRACE solutions, and (3) allows us to integrate model parameter calibration and data assimilation within a unified framework. We investigate the formal contribution of GRACE observations to the Kalman filter update by analysis of the Kalman gain matrix. We then present first model runs, calibrated via data assimilation, for two different experiments: the first one assimilates GRACE basin averages of total water storage and the second one introduces gridded GRACE data at \(5^\circ\) resolution into the assimilation. We finally validate the assimilated model by running it in free mode (i.e., without adding any further GRACE information) for a period of 3 years following the assimilation phase and comparing the results to the GRACE observations available for this period. 相似文献
14.
富营养化模型是进行湖泊水环境质量预测和管理的重要工具,然而模型客观存在的误差一直是应用者关心的重要问题.数据同化作为连接观测数据与数值模型的重要方法,可以有效提高模型的准确性.集合卡尔曼滤波(En KF)是众多数据同化算法中应用最为广泛的一种,可进行非线性系统的数据同化,并能有效降低数据同化的计算量.本研究以太湖作为具体实例,选择Delft3D-BLOOM作为富营养化模型,在数值实验确定En KF集合数为100、观测误差方差为1%、模拟误差方差为10%的基础上分别进行模型状态变量同化以及状态变量与关键参数同步同化.结果显示,仅同化状态变量时,模型预测精度有所增加;同时同化状态变量和关键参数时,可显著提升模型在湖泊水环境质量预测中的精度.该研究为应用集合卡尔曼滤波以提高复杂的湖库富营养化模型模拟精度提供了有效的方法. 相似文献
15.
16.
Long-term or seasonal forecasting is crucial for the management of large water systems. Advances in catchment hydrology, such as mathematical models of catchment processes, are proven to be capable of creating reliable streamflow forecasting systems. In this study, the limits of predictability of streamflow in a snowmelt-dominated river basin are examined and a new illustration of the forecast efficiency across different issue dates and lead times—the so-called “forecastability map”—is demonstrated. 相似文献
17.
Monitoring the concentration of radon gas is an established method for geophysical analyses and research, particularly in earthquake studies. A continuous radon monitoring station was implemented in Jooshan hotspring, Kerman province, south east Iran. The location was carefully chosen as a widely reported earthquake-prone zone. A common issue during monitoring of radon gas concentration is the possibility of noise disturbance by different environmental and instrumental parameters. A systematic mathematical analysis aiming at reducing such noises from data is reported here; for the first time, the Kalman filter (KF) has been used for radon gas concentration monitoring. The filtering is incorporated based on several seismic parameters of the area under study. A novel anomaly defined as “radon concentration spike crossing” is also introduced and successfully used in the study. Furthermore, for the first time, a mathematical pattern of a relationship between the radius of potential precursory phenomena and the distance between epicenter and the monitoring station is reported and statistically analyzed. 相似文献
18.
19.
An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering 总被引:4,自引:0,他引:4
The ensemble Kalman filter (EnKF) is a commonly used real-time data assimilation algorithm in various disciplines. Here, the EnKF is applied, in a hydrogeological context, to condition log-conductivity realizations on log-conductivity and transient piezometric head data. In this case, the state vector is made up of log-conductivities and piezometric heads over a discretized aquifer domain, the forecast model is a groundwater flow numerical model, and the transient piezometric head data are sequentially assimilated to update the state vector. It is well known that all Kalman filters perform optimally for linear forecast models and a multiGaussian-distributed state vector. Of the different Kalman filters, the EnKF provides a robust solution to address non-linearities; however, it does not handle well non-Gaussian state-vector distributions. In the standard EnKF, as time passes and more state observations are assimilated, the distributions become closer to Gaussian, even if the initial ones are clearly non-Gaussian. A new method is proposed that transforms the original state vector into a new vector that is univariate Gaussian at all times. Back transforming the vector after the filtering ensures that the initial non-Gaussian univariate distributions of the state-vector components are preserved throughout. The proposed method is based in normal-score transforming each variable for all locations and all time steps. This new method, termed the normal-score ensemble Kalman filter (NS-EnKF), is demonstrated in a synthetic bimodal aquifer resembling a fluvial deposit, and it is compared to the standard EnKF. The proposed method performs better than the standard EnKF in all aspects analyzed (log-conductivity characterization and flow and transport predictions). 相似文献