首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar interior structure and luminosity variations   总被引:1,自引:0,他引:1  
The assumptions of standard solar evolution theory are mentioned briefly, and the principle conclusions drawn from them are described. The result is a rationalization of the present luminosity and radius of the Sun. Because there is some uncertainty about the interior composition of the Sun, a range of models is apparently acceptable.To decide which model is the most accurate, other more sensitive comparisons with observations must be made. Recent measurements of frequencies of dynamical oscillations are particularly valuable in this respect. The most accurate observations are of the five-minute oscillations, which suggest that the solar composition is not atypical of other stars of the same age as the Sun.The theory predicts that the solar luminosity has risen steadily from about 70% of its current value during the last 4.7 x 109yr. Superposed on this there might have been variations on shorter timescales. Variations lasting about 107yr and occurring at intervals of 108yr have been suggested as being the cause of terrestrial ice ages. Moreover, there may be other variations, associated with instabilities arising from the coupling between the convection zone and the radiative interior, that occur on a timescale of 105yr and which also have climatic consequences. These issues are quite uncertain.We do know that the Sun varies magnetically with a period of about 22 yr, and that this oscillation is modulated irregularly on a timescale of centuries. This appears to be a phenomenon associated with the convection zone and its immediate neighbourhood, though control from a more deeply-seated mechanism is not out of the question. There is a small luminosity variation associated with this cycle, and the way by which this might come about is discussed in terms of certain theories of the solar dynamo.Finally, there must be small surface flux variations associated with the dynamical oscillations mentioned above. Though the total luminosity variations are extremely small, the flux in any specific direction, and in particular that of the earth, may be measurable.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

2.
3.
Unattenuated solar photo rate coefficients and excess energies for dissociation, ionization, and dissociative ionization are presented for atomic and molecular species that have been identified or are suspected to exist in the atmospheres of planets, satellites (moons), comets, or as pollutants in the Earth atmosphere. The branching ratios and cross sections with resonances have been tabulated to the greatest detail possible and the rate coefficients and excess energies have been calculated from them on a grid of small wavelength bins for the quiet and the active Sun at 1 AU heliocentric distance.  相似文献   

4.
In the restricted circular three-body problem, two massive bodies travel on circular orbits about their mutual center of mass and gravitationally perturb the motion of a massless particle. The triangular Lagrange points, L4 and L5, form equilateral triangles with the two massive bodies and lie in their orbital plane. Provided the primary is at least 27 times as massive as the secondary, orbits near L4 and L5 can remain close to these locations indefinitely. More than 2200 cataloged asteroids librate about the L4 and L5 points of the Sun-Jupiter system, and five bodies have been discovered around the L4 point of the Sun-Neptune system. Small satellites have also been found librating about the L4 and L5 points of two of Saturn's moons. However, no objects have been discovered around the Earth-Moon L4 and L5 points. Using numerical integrations, we show that orbits near the Earth-Moon L4 and L5 points can survive for over a billion years even when solar perturbations are included, but the further addition of the far smaller perturbations from other planets destabilize these orbits within several million years. Thus, the lack of observed objects in these regions cannot be used as a constraint on Solar System formation, nor on the tidal evolution of the Moon's orbit.  相似文献   

5.
6.
The low frequency array (LOFAR) radiotelescope will be a powerful instrument for answering fundamental, unresolved scientific questions concerning solar system radio phenomena and related emissions from nearby stellar systems. This paper reviews the phenomena, emission mechanisms, open scientific questions, and LOFAR's capabilities. LOFAR will detect metric solar radio bursts in the corona and interplanetary medium, out to distances of order 10 solar radii, as well as Jovian radio emissions. Arguments are given that LOFAR may be sufficiently sensitive to detect stellar analoges of solar type II and III bursts, and may detect cyclotron-maser emissions from extra-solar planets. LOFAR may also aid space weather research, by passively detecting coronal mass ejections (CMEs) via scintillation and Faraday rotation effects, or by detecting radar signals bounced off CMEs and coronal density structures if a suitable solar radar is developed.  相似文献   

7.
B. C. Low 《Solar physics》1996,167(1-2):217-265
This review puts together what we have learned about coronal structures and phenomenology to synthesize a physical picture of the corona as a voluminous, thermally and electrically highly-conducting atmosphere responding dynamically to the injection of magnetic flux from below. The synthesis describes complementary roles played by the magnetic heating of the corona, the different types of flares, and the coronal mass ejections as physical processes by which magnetic flux and helicity make their way from below the photosphere into the corona, and, ultimately, into interplanetary space. In these processes, a physically meaningful interplay among dissipative magnetohydrodynamic turbulence, ideal ordered flows, and magnetic helicity determines how and when the rich variety of relatively long-lived coronal structures, spawned by the emerged magnetic flux, will evolve quasi-steadily or erupt with the impressive energies characteristic of flares and coronal mass ejections. Central to this picture is the suggestion, based on recent theoretical and observational works, that the the emerged flux may take the form of a twisted flux rope residing principally in the corona. Such a flux rope is identified with the low-density cavity at the base of a coronal helmet, often but not always encasing a quiescent prominence. The flux rope may either be bodily transported into the corona from below the photosphere, or reform out of a state of flaring turbulence under some suitable constraint of magnetic-helicity conservation. The appeal of this synthesis is its physical simplicity and the manner it relates a large set of diverse phenomena into a self-consistent whole. The implications of this view point are discussed.The topics covered are: the large-scale corona; helmet streamers; quiescent prominences; coronal mass ejections; flares and heating; magnetic reconnection and magnetic helicity; and, the hydromagnetics of magnetic flux emergence.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
A method due to Schuster is used to test the hypothesis that solar activity is influenced by tides raised in the Sun's atmosphere by planets. We calculate the distribution in longtitude of over 1000 flares occurring in a 61/2 yr segment of solar cycle 19, referring the longitude system in turn to the orbital positions of Jupiter and Venus. The resulting distributions show no evidence for a tidal effect.  相似文献   

9.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

10.
Peak fluxes of flare-associated 8–12 Å X-ray bursts occur at or near the time of the maximum energy content of the soft X-ray source volume. The amplitudes of flare-associated bursts may thus be used as a measure of the energy deposited in the source volume by non-thermal electrons and other processes. In the mean, the soft X-ray burst amplitude is apparently independent of the occurrence of a type III event. This is interpreted to indicate that electrons accelerated by the type III process do not directly participate in establishing the soft X-ray source volume.  相似文献   

11.
Soft solar X-rays (8 gl 12 Å) were observed from OSO-III. An analysis of the X-ray enhancements associated with 165 solar flares revealed that there is a tendency for a weak soft X-ray enhancement to precede the cm- burst and H flare. The peak soft X-ray flux follows the cm- peak by about 4 min, on the average. Additionally, it was found that flare-rich active centers tend to produce flares which are stronger X-ray and cm- emitters than are flares which take place in flare-poor active centers.  相似文献   

12.
Experimental results on the interaction between fast bombarding ions and solid targets simulating satellite surfaces in the Outer Solar System are reviewed. Applications to Jovian, Saturnian, Uranian, Neptunian, and Plutonian systems suggest the important role played by cosmic and magnetospheric ions in eroding material, in redistributing it on the surfaces of some objects, and in producing either thin or thick mantles of dark organics.  相似文献   

13.
Fast Fourier analysis of the detrended record of solar irradiance obtained by the Nimbus-7 cavity pyrheliometer shows a rich spectrum of significant frequencies between about 30 and 850 nHz (periods between 13 and 400 days). Wolff and Hickey (1987a, b), elaborating on a model developed by Wolff (1974a, b, 1976, 1983, 1984), suggest that many of these peaks arise due to interference of rigidly rotating global solar oscillations (r- and g-modes). Their model fit is quite good in the region above about 135 nHz, but less satisfactory below this threshold. We note that the FFT spectrum of d2 L/d2 t, the second derivative of angular momentum of the solar inertial motion, contains peaks matching the large peaks in the irradiance spectrum below 400 nHz with periods near 0.08, 0.24, 0.65, and about 1 yr. We discuss the origins of the peaks in the d2 L/d2t spectra and review some previous studies bearing on the question of a possible relationship of solar motion and solar activity. The future persistence of the observed spectral peaks of irradiance with periods near 0.24 and 0.65 yr will provide a key test for this hypothesis.  相似文献   

14.
On the basis of a radio index-surface brightness diagram recently published, the luminosity function and the luminosity diameter function are obtained. The uncertainties due to the incompleteness of the sample are of the same order as the statistical uncertainties. The luminosity function differs considerably from a simple power law and supports the distinction of two populations. The density of the weak population (P<1035 W Hz−1 ster−1 at 1400 MHz) follows nearly a power law in P and increases towards small diameters at least down to I kpc. The density of the strong population (the high luminosity and small diameter part of which is occupied by the quasars) has a maximum between 1025 and 1028 W Hz−1 ster−1 and around 100 kpc. A strong evolution effect is clearly present and is in a good agreement with the models obtained from the log N-log S counts.  相似文献   

15.
Solar activity and recurrences in magnetic-field distribution   总被引:1,自引:0,他引:1  
A study of the Mount Wilson magnetic-field synoptic chart material divided into latitude zones for the interval 1959–67, and a comparison of the data with sunspot groups have provided a better understanding of the structure of the background-field pattern and its relation to activity. The interaction of old and new fields within the pattern seems to result in long-lived sections of alternating polarity in both hemispheres. We postulate subsurface sources with rotation periods of about 27 days which produce active regions over a longitude zone of some tens of degrees. There is a tendency for the background-field features with strong fields to resist to some extent the shearing effects of differential rotation. A prediction is made concerning the nature of the interplanetary magnetic field above the ecliptic.On leave from the Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, Calif., U.S.A.  相似文献   

16.
Sunspots and pores appear as a consequence of interactions between strong magnetic fields and moving plasma. A wide variety of small‐scale features, presumably of convective origin, are observed in photospheric layers of sunspots and pores: Umbral dots, light bridges, penumbral filaments, and penumbral grains. Each type of features has specific morphological, photometric, spectral, and kinematic characteristics. Spots and pores modify velocity fields in adjacent photosphere and sub‐photospheric layers. Recent high‐resolution spectral, broad‐band, and helioseismic observations of the structure, dynamics, and magnetic fields of sunspots and pores, together with theoretical interpretations, are discussed in this review.  相似文献   

17.
Benevolenskaya  Elena E. 《Solar physics》2003,216(1-2):325-341
Extreme-ultraviolet data from EIT/SOHO (1996–2002), soft X-ray data from Yohkoh (1991–2001), and magnetic field data from MDI/SOHO (1996–2002) and Kitt Peak Observatory, NSO/NOAO (1991–2002) are analyzed together in the form of synoptic maps for the investigation of solar cycle variations of the corona and their relation to the magnetic field. These results show new interesting relations between the evolution of the topological structure of the corona, coronal heating and the large-scale magnetic field. The long-lived coronal structures are related to complexes of solar activity and display quasi-periodic behavior (in the form of impulses of coronal activity) with periods of 1.0–1.5 year, in the axisymmetric distribution of EUV and X-ray fluxes during the current solar cycle 23. In particular, during the second maximum of this cycle the solar corona became somewhat hotter than it was in the period of the first maximum.  相似文献   

18.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

19.
William R. Ward 《Icarus》1981,47(2):234-264
Secular resonances in the early solar system are studied in an effort to establish constraints on the time scale and/or method of solar nebula dispersal. Simplified nebula models and dispersal routines are employed to approximate changes in an assumed axisymmetric nebula potential. These changes, in turn, drive an evolutionary sequence of Laplace-Lagrange solutions for the secular variations of the solar system. A general feature of these sequences is a sweep of one or more giant planet resonances through the inner solar system. Their effect is rate dependent; in the linearized models considered, characteristic dispersal times ≤O(104?5 years) are required to avoid the generation of terrestrial eccentricities and inclinations in excess of observed values. These times are short compared to typical estimates of the accretion time scales [i.e., ~O(107?9 years)] and may provide an important boundary condition for developing models of nebula dispersal and solar system formation in general.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号