共查询到19条相似文献,搜索用时 46 毫秒
1.
为研究青藏高原的岩石层构造及其动力学过程,根据记录到的来自台站东北方向的大量宽频带远震林波波形资料,应用时间域的最大熵谱反褶积算法,得到了11个(全部)PASSCAL(地壳与岩石层的地震台阵研究计划)台站的接收函数.利用时间域广义线性反演的Jumping(跳动)算法,引入模型光滑度约束,并将合成地震图的Kennett完全算法及微分地震图的Randall快速算法用于接收函数的正演计算,由台站接收函数获得了各台站下方的一维S波速度分布.反演结果表明,青藏高原的Moho界面在班公—怒江缝合带附近存在明显的深度错断;在日喀则、拉萨、桑雄和安多等地的地壳内部,可以连续观测到三个显著的速度界面h1,h2和h3,其中h1和h2可以连续追踪到温泉、二道沟和不冻泉等地,而h3在班公—怒江缝合带以北消失;在日喀则、拉萨、桑雄、安多、二道沟和不冻泉等地有壳内低速层.关于班公—怒江缝合带附近Moho界面的错断现象,一个可能的解释是班公—怒江缝合带是印度地壳向欧亚下地壳挤入的前沿. 相似文献
2.
3.
相对于宽阔的腹地,青藏高原西部南北向宽度仅约600 km,却记录了印度和欧亚板块汇聚的深部过程及其响应.本文用22台宽频带流动地震台站在西缘构建了一条南北向探测剖面(~80°E,TW-80试验).利用接收函数反演剖面下方S波速度结构,综合西部已有的宽频带探测结果,分析认为:印度板块向北俯冲可能已到达班公湖-怒江缝合带附近,俯冲过程中下地壳发生榴辉岩化;喀拉昆仑断裂带、班公湖-怒江缝合带、阿尔金断裂带均为切穿地壳的深断裂,莫霍面发生错断;喀拉昆仑断裂带和龙木错断裂带之间的中上地壳没有发现连续的S波低速体,说明可能缺乏解耦层,支持青藏高原西部地壳为整体缩短增厚模式. 相似文献
4.
用接收函数方法反演青藏高原东北缘地壳结构 总被引:11,自引:0,他引:11
利用ASCENT计划于2007年布设在青藏高原东北缘的18个宽频带流动台站约一年的观测资料获得了2547个接收函数.使用H-?域的搜索算法,得到了14个台站下方的地壳厚度.对于数据质量较差的3个台站,通过Moho的Ps转换波的到时估算出地壳厚度值.计算结果表明,研究区的地壳结构复杂,Moho深度变化范围为40~60 km.海原断裂附近Moho模糊,而且较两侧明显地加深.秦祁地块由西向东Moho逐渐变浅,105°E以东,Moho平均深度约为45 km,以西则在50 km以上.结合面波研究结果推测,在105°E附近可能存在一个秦岭与祁连分界线.以Crust 2.0作为初始模型,把计算得到的地壳厚度值作为约束,用线性反演方法得到了15台站下方的S波速度结构.通过与研究区人工源地震测深结果比较,发现二者具有较好的一致性,表明反演结果可靠.综合分析认为:在青藏高原区,青藏高原与西秦岭过渡带和西秦岭北段均存在中下地壳低速层,推测它们可能与附近断裂和深部物质运移有关.从青藏高原内部到边缘,中下地壳速度逐渐升高.再结合研究区地壳的速度(尤其是低速层)的分布特点以及与地壳物质成分相关的泊松比的变化规律等综合分析,认为地壳流在青藏高原东北部的边缘地带可能不存在,地壳可能是通过在挤压方向上的缩短而加厚. 相似文献
5.
利用青海和甘肃地震台网2007-2009年记录的远震波形资料,提取多频段P波接收函数,反演得到了青藏高原东北缘及相邻地块下方0~100 km深度的地壳和上地幔S波速度结构.结果表明:(1)青藏高原东北缘的上、下地壳之间普遍存在一个S波速度低速层,其深度由南端的约35 km 向北变浅约为20 km,推测该低速层为一壳内滑脱层,表明东北缘地区的上地壳变形与下地壳解耦,从滑脱层的深度分布可以认为青藏高原东北缘的地壳缩短自南向北进行,现阶段以上地壳增厚为主;(2)昆仑-西秦岭造山带的下地壳厚度较北侧的祁连地块薄,一种推测是西秦岭造山带的下地壳抗变形能力更强,也可能这种差异在块体拼合前已经存在;(3)青藏高原东北缘及鄂尔多斯和阿拉善地块的下地壳S波速度随深度的增加而增加,这种正梯度增加的S波速度结构反映较高黏滞性的下地壳,推测青藏高原东北缘的地壳结构不利于下地壳流的发育. 相似文献
6.
利用根据中美合作研究青藏高原深部结构计划布设在青藏高原上的11个宽频带数字地震仪记录到的远震体波数据,采用接收函数(receiver function)反演的方法,对各台站下面地壳上地幔地震波速度结构进行了研究。台站接收函数是通过将三分向地震记录的两个水平分量旋转合成得到径向分量,然后在频率域除以垂直分量并变换回到时间域得到的,它仅与台站下面介质结构有关,而基本上与震源函数和传播路径无关。为压制噪声干扰,对来自同一方向上一定震中距范围内的远震记录得到的接收函数进行了叠加。采用分层弹性介质中弹性波传播矩阵理论,我们可以计算得到分层介质的理论接收函数以及它对各层弹性参数的偏导数,从而利用迭代线性反演可从观测接收函数得到台站下面的一维速度结构。本文给出了其中3个台,即温泉台、格尔木台和日喀则台的初步结果,它们分别位于高原的中部、北部和南部。从各台的接收函数中都可看到清晰的 Moho 面上的 P-S 转换波震相,其相对直达 P 波的走时延迟分别为:温泉台7.9s(东北方向结果),8.3s(东南方向结果);格尔木台8.2s;日喀则台9.0s,如此大的延迟表明高原地壳的巨厚. 相似文献
7.
青藏高原东南缘的龙门山断裂两侧具有陡峭的地形特征,在约50~100 km的水平距离内,地形高程从2000 m增加到4000 m,该区强烈的壳幔变形特征及地球动力学模式一直是研究的热点问题.本文从四川地区49个固定台站记录的远震资料提取了P波接收函数,获得了四川盆地及周边的地壳厚度和泊松比,并以此构建反演的初始模型.在线性反演的基础上,引入了分别拟合低频和高频接收函数的两步反演技术,用以反演台站下方的地壳S波速度结构.数字试验表明,该方法可以有效抑制接收函数反演的不唯一性,为了得到最优解,最后用Bootstrap重采样技术估计解的不确定性.结果表明,四川盆地的地壳厚度在40~46 km,松潘-甘孜块体北部的地壳厚度为46~52 km,而南部增厚到50~60 km.从四川盆地向西跨过龙门山断裂,地壳厚度增加了10~15 km.在四川盆地及周边地区,地壳泊松比在0.26~0.32之间,呈块体分布特征,高泊松比(0.28~0.32)主要沿龙门山断裂以及安宁河-小江断裂分布.地壳S波速度结构表明,来自青藏高原中部的中下地壳低速层可能受到了坚硬的四川盆地阻挡,改变原来的运动方向并沿龙门山断裂展布,由于低速层的囤积导致该区地形陡峭和下地壳增厚.
相似文献8.
利用分布在东北地区的国家地震局台网、NECESSArray台网、吉林大学在长白山及其周边地区布设的26个临时台站总计259个台站接收到的16,070条高质量的P波接收函数,采用H-k和CCP(Common Conversion Point,共转换点)叠加成像方法,获得该区高分辨率的地壳结构.观测结果显示,东北地区莫霍界面深度和地表高程总体呈镜像关系;西部大兴安岭—太行山重力梯级带附近存在莫霍界面深度陡变带;中部的松辽盆地地区受晚中生代的地壳拉伸作用影响,地壳厚度较薄,北部的小兴安岭地区和南部的华北北缘造山带可能同样受拉伸运动影响,具有较小的地壳厚度;松辽盆地莫霍界面深度由西向东逐渐减小,推测这与太平洋板块俯冲作用有关;东部地区莫霍界面结构比较复杂,依兰—伊通断裂与敦化—密山断裂之间出现复杂震相,可能与该区存在地幔物质的底侵作用有关;长白山火山地区地壳厚度较大,对应较高的波速比,推测在该区地壳内存在岩浆囊. 相似文献
9.
本文使用位于青藏高原东南缘的25个地震台站的远震数据,采用P波和S波接收函数的方法研究了台站下方的Moho深度、泊松比以及地幔过渡带的厚度.计算结果表明:① 青藏高原东南缘的地壳厚度由松潘—甘孜地体和羌塘地体的约60 km,向邻区的印支地体以及扬子板块分别减薄为约38 km和约42 km; ② 羌塘地体的泊松比主要集中范围为0.25~0.28,地壳物质组分主要为中基性岩石,推测与下地壳镁铁质成分的增加有关.松潘—甘孜块体、印支块体和扬子板块的泊松比为0.25~0.26,主要为中酸性岩石组分.缺乏高的泊松比(≥0.30)分布表明青藏高原东南缘的地壳不存在广泛的部分熔融,但是不排除局部部分熔融的存在;③ 青藏高原东南缘的羌塘地体内存在一个比较明显的、异常变化范围为10~26 km的地幔过渡带增厚区域,其对应着地幔过渡带内100℃~260℃的温度降低,可以推断与此异常区域的地幔过渡带内存在俯冲的板块有关. 相似文献
10.
利用71个远震的波形资料,用接收函数方法提取了布设在长白山—镜泊湖火山区的34个宽频带流动数字地震台站的接收函数,通过对接收函数反演,获得了台站下方的S波速度结构.研究结果表明,沈阳—敦化一线莫霍面深度32~33km,向西地壳厚度加厚,到长春附近地壳厚度约为36km.在天池火山口莫霍面深度为达38km,而镜泊湖火山口森林的莫霍面深度约为39km.总体看研究区的地壳厚度是南浅北深.长白山天池火山口附近地下10km左右有一明显的低速层存在;镜泊湖火山口森林附近30km也可能有低速体存在;研究发现莫霍面上S波速度梯度在火山口附近和远离火山口有明显区别.在火山口附近其莫霍面的S波速度梯度比非火山口地区的S波速度梯度明显小,说明火山口下与一般的地壳莫霍面结构有差别.研究发现沈阳—敦化一线两侧的莫霍面深度有较大变化,其位置与地表的敦化—密山断裂基本一致,说明敦化—密山断裂是研究区的一条非常重要的地质构造带. 相似文献
11.
采用波形反演方法对青藏高原地区震中距8°-38°范围内的宽频带炸波波形进行拟合,研究该地区上地幔平均速度结构以及上地幔纵、横波速度的横向不均匀性结果表明青藏高原地区的平均地壳厚度约为68km,上地幔盖层平均厚度约为30-40km,速度约为8.10km/s雅鲁藏布江附近地壳厚度最大,约80km,相应的上地幔Pn速度为8.15km/s左右,青藏高原中部地区的地壳平均厚度约68-70km.位于拉萨地块北部的羌塘地块S波速度相对较低,其地壳和上地慢的平均S波速度分别比拉萨地块低1%和2%以上34°N以北,90°E附近的区域存在明显的上地幔P波低速异常区,P波的平均速度小于7.8km/s据此结果及前人工作,推断印度板块的俯冲可能以雅鲁藏布江缝合带附近为界,青藏高原巨大的地壳厚度是由于欧亚板块碰撞造成地壳缩短与增厚引起. 相似文献
12.
利用时频偏振分析技术分析穿过青藏高原不同地区的基阶Love波的偏振方向,确定不同周期的Love波到达台站的入射方向对于大圆的偏离.结果表明,在青藏高原内部传播的Love波传播路径基本不偏离大圆路径,穿过青藏块体及川滇西部低速区边界的Love波明显偏离大回路径低速区(青藏高原及川滇西部)的边界区域速度变化梯度大,对路径影响大.低速区内部路径偏离不明显,内部速度变化梯度比边界区域速度变化梯度小.低速区内大约在青藏高原中部位置是面波速度最低的地方.面波路径对于大圆路径的明显偏离,是由于速度结构的横向不均匀性造成的.利用已知的相速度分布,采用射线追踪方法正演计算的结果与实测结果在偏离方向上是一致的,但偏离角的值则比实测值小. 相似文献
13.
14.
根据1993年和1995年对青藏高原地壳运动进行的两期 GPS 监测的实测结果,分析了青藏高原现今地壳水平运动情况,并将其与不同地质运动模型结果进行了比较。结果表明,青藏高原现今地壳水平运动速率和方向与地质结果符合很好。目前,青藏高原大约以38.6mm/a 的速度向北东方向运动。 相似文献
15.
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0—0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32—34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在—20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40—50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70—80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性. 相似文献
16.
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0-0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32-34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在-20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40-50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70-80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性. 相似文献
17.
将大陆岩石层视为由幂指数律控制的一层薄层,它上伏在粘滞性较低的软流层之 上蠕变流动,其运动限制在与东亚大陆构造形态较相似的边界模型的梯形框架之中.设印度 板块以一恒定的速度向北推进,并被视为青藏高原挤压隆升的主要动力.用数值模拟的方法 研究了青藏高原的挤压隆升演化过程,并对数值模拟的隆升过程作了剥蚀修正.结果表明, 由挤压模型所产生的地形和现代青藏高原及其邻区的地形格局比较吻合.同时也表明,挤压 隆升过程受多种因素(如岩石层的力学特性、边界条件以及剥蚀作用)的制约,无论从空间还 是从时间上看,模拟所反映的高原隆升都是不均匀的演化过程. 相似文献
18.
将大陆岩石层视为由幂指数律控制的一层薄层,它上伏在粘滞性较低的软流层之 上蠕变流动,其运动限制在与东亚大陆构造形态较相似的边界模型的梯形框架之中.设印度 板块以一恒定的速度向北推进,并被视为青藏高原挤压隆升的主要动力.用数值模拟的方法 研究了青藏高原的挤压隆升演化过程,并对数值模拟的隆升过程作了剥蚀修正.结果表明, 由挤压模型所产生的地形和现代青藏高原及其邻区的地形格局比较吻合.同时也表明,挤压 隆升过程受多种因素(如岩石层的力学特性、边界条件以及剥蚀作用)的制约,无论从空间还 是从时间上看,模拟所反映的高原隆升都是不均匀的演化过程. 相似文献