首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.  相似文献   

2.
The theory of the Hanle effect is used to interpret the linear polarization measured in a number of spectral lines on the solar disk near the heliographic north and south poles, in search for a turbulent magnetic field in the solar atmosphere. The Hanle depolarization is separated from a number of other effects, including collisional depolarization and scattering geometry. Although the main aim of the paper is to elucidate the physics of the Hanle effect as applied to the Sun, our results indicate the existence of hidden or turbulent magnetic flux near the temperature minimum of the solar atmosphere, with a field strength between 10 and 100 G. This field is hidden in the sense that it is not seen in measurements of the longitudinal Zeeman effect (solar magnetograms). It carries more total magnetic flux than the kG network fields.  相似文献   

3.
4.
The structure of the interplanetary magnetic field within the flare streams as well as associated variations of the geomagnetic disturbancy are considered. It is shown that in the main body of the flare stream the magnetic field is determined by the configuration of the large scale magnetic field on the Sun at the flare region. Within the head part of the flare stream the magnetic field represents by itself the compressed field of the background solar wind and hence is determined by the distribution of the super large scale solar magnetic field outside the flare region.A certain asymmetry in the parameters of the magnetic field within the streams associated with geoeffective and non-effective flares is shown to exist.  相似文献   

5.
6.
The energy release by Joule magnetic-field dissipation in the solar atmosphere is discussed. It is shown that the heating is unimportant in the case of granulation and intergranular space. In the case of spot features the additional temperatures Tr with the accounting of the radiation losses are no more than 30° for small new spots, 1° for the large umbrae and 300° for bright points in large umbrae. This effect gives the possibility to suggest a hypothesis on the source of temperature inhomogeneity in the spot umbra and the nature of bright points. In the chromosphere the dissipation is negligible.On leave from the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), U.S.S.R., Moscow region, p/o Academgorodok.  相似文献   

7.
The small-scale (~10″) stochastic properties of the solar magnetic field B are analyzed in terms of the two-dimensional model of a fractal Brownian process (the mean square of the difference between the field strengths at two points separated by a distance D is proportional to D 2H ). Digitized solar magnetograms with a 2″ resolution are used to determine the standard deviation s of the magnetic field and the exponents H at various levels of |B|. It has been established that the transition from the background magnetic field to the fields of an active region occurs near 25–50 G. A dependence of the exponent H on the magnetic field amplitude has been derived. The exponent H for the background magnetic field has been found to be much smaller than that for the fields of an active region. The relationship of the results obtained to certain fundamental properties of plasma in a magnetic field is discussed.  相似文献   

8.
M. Simon  H. Zirin 《Solar physics》1969,9(2):317-327
Observations of the quiet sun at wavelengths from 3 Å to 75 cm show (with two exceptions: the Ovi line at 1032 Å and possibly the continuum at 1.2 mm) either no limb brightening or less than had been supposed. On the other hand, the brightness temperature is observed to increase with wavelength in the millimeter and centimeter range. If this increase is due to greater visibility of hot overlying material, that material ought to be evident at the limb at shorter wavelengths, resulting in limb brightening. The only possible explanation for the absence of limb brightening at almost all wavelengths is that the emitting surface is rough at all wavelengths, with a scale of roughness approximately equal to the scale height at each temperature. Contradictions with existing models, along with the additional observations required for an improved model are discussed.  相似文献   

9.
A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA’s Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 102 V cm-1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.  相似文献   

10.
Torsional waves supported by magnetic flux tubes have long been thought to bear a high potential for supplying energy and momentum to the upper solar atmosphere, thereby contributing to its heating and to the driving of dynamic events like spicules. This hope rested on the belief that their propagation is not impeded by cutoff restrictions, unlike longitudinal and kink waves. We point out that this applies only to thin, isothermal tubes. When they widen in the chromosphere, and as a result of temperature gradients, cutoff restrictions arise. We compare them to recent observational reports of such waves and of vortex motions and find that their long period components are already affected by cutoff restrictions. An observational strategy is proposed that should permit the derivation of better information on vortex flows from off‐center observations with next generation telescopes (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The large-scale density structure of the white-light solar corona has been compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere in order to examine whether any consistent relationship exists between the two. Data from the High Altitude Observatory's Mk-III K-coronameter have been used to describe the coronal density structure, and observations from several sources, beginning with observations from the University of Hawaii Stokes Polarimeter have been used to establish the magnetic field distribution. Stanford magnetograms as well as the neutral line inferred from potential field models have also been examined. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements, however, are associated with neutral lines through active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. We find a significant number of long-lived neutral lines, including filaments seen in H, for which there are not coronal enhancements.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
It has been shown that non-spherical waves could be excited in rotating stellar convective envelopes. In this paper, the manner of excitation of such waves is examined in the presence of toroidal magnetic field. The result shows that one of these waves might be considered to induce the formation of the observed magnetic unipolar regions of the sun.Visiting Scientist to the High Altitude Observatory on leave of absence from the Department of Astronomy, University of Tokyo, Japan.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Eclipse photographs indicate that large regions of the inner solar corona are confined in various types of closed magnetic configurations and, as a result, do not participate in the general solar wind expansion. In this paper, the rotation of initially poloidal loop configurations of this type, as influenced by differential rotation of the footpoints, is investigated. The analysis is restricted to axially symmetric fields and it is assumed that the toroidal magnetic field induced by differential rotation is small as compared to the initial poloidal field. This restricts the validity of the analysis to times less than about one month.The most interesting physical situation is that of flux tubes existing in one solar hemisphere only, one end of the tube being fixed in the photosphere at a higher latitude than the other. As a consequence, the lower end of the tube rotates at a faster rate than the upper end. Solution of the pertinent equations reveals that the angular velocity measured along a field line increases monotonically from its value at the poleward footpoint to that at the lower footpoint. The variation of angular velocity along the field depends upon the field geometry only and is not directly related to the variation of angular velocity along the solar surface between the footpoints. Depending upon the field configuration, both outward radial increases and decreases are possible. Using the Newton and Nunn model for the surface differential rotation rate, the angular velocity distribution on two particularly simple types of closed magnetic loop systems is determined analytically. It is shown that the angular velocity increases outward in the polar regions but decreases outward near the equator - leading to a decrease in differential rotation with height.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
It is shown that the discontinuous jump in the vertical wave energy flux of slow hydromagnetic-gravity waves, occurring at a critical level, which is accompanied by wave absorption, and the existence of a reflection point imply that slow waves are trapped in the solar atmosphere. Thus such a system behaves as a leaky wave guide.  相似文献   

16.
The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (P n m )()cosm and P n m ()sinm) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the equator (2 sectors, n = m = 1). This 2-sector harmonic was particularly dominant during the active years of solar cycles 19 and 20. The north-south dipole harmonic (n = 1, m = 0) was prominent only during quiet years and was relatively insignificant during the active years. (The derived north-south dipole includes magnetic fields from the entire solar surface and does not necessarily correlate with either the dipole-like appearance of the polar regions of the Sun or with the weak polar magnetic fields.) The 4-sector structure (n = m = 2) was prominent, and often dominant, at various times throughout the cycle. A 6-sector structure (n = m = 3) occasionally became dominant for very brief periods during the active years. Contributions to the general solar magnetic field from harmonics of principal index 4 n 9 were generally relatively small throughout this entire solar cycle with one outstanding exception. For a period of several months prior to the large August 1972 flares, the global photospheric field was dominated by an n = 5 harmonic; this harmonic returned to a low value shortly after the August 1972 flare events. Rapid changes in the global harmonics, in particular, relative and absolute changes in the contributions of harmonics of different principal index n to the global field, imply that the global solar field is not very deep or that very strong fluid flows connect the photosphere with deeper layers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Statistical properties of solar granulation in an active region on the solar surface from the photosphere to the lower chromosphere are studied. We use the values of the velocity, intensity, and magnetic field that were obtained at different heights in the solar atmosphere according to the observation data on the VTT telescope at Observatorio del Teide, Tenerife. The changes in the line??s parameters (central depth of the line, halfwidth, equivalent width, and central depth shift) and convective velocity are presented as functions of the value of the magnetic field. We propose a 16-column model of solar granulation depending on the direction of motion of convective elements and on the sign of contrast at two heights??in the continuous spectrum and in the highest layer (h = 650 km). We found that the magnetic field impedes the change in the sign and motion direction of convective elements.  相似文献   

18.
Some observed astrophysical phenomena, such as the blast of a supernova, suggest the necessity to study the motion of shock waves in a relativistic fluid flow in the presence of a magnetic field. This paper deals with the motion of a special relativistic shock wave which propagates from the center line outwardly after an explosion with the assumption that the magnetic field which has an axial component only. Similarity solutions which depend on the parameter =r/t are constructed. Two special cases are then studied in detail. In the first case, there is an ultrarelativistic fluid in front of the shock and in the second case, there is a cold fluid in front of the shock.  相似文献   

19.
The three-dimensional structure of the solar magnetic field in the interplanetary space is inferred from a theoretical point of view. We use the magnetic field produced by a magnetic dipole rotating obliquely in vacuum. The correction for the presence of a plasma surrounding the Sun is taken into account in terms of a phenomenological approximation.Our method well reproduces the basic features of the polarity-reversal-surface (the neutral sheet in the two-hemisphere model by Saito (1975)) obtained on the basis of observational data, i.e. the snail-shell like structure and variation of its precise shape in accordance with the solar cycle, except for the folding of the surface.  相似文献   

20.
Steffens  S.  Schmitz  F.  Deubner  F.-L. 《Solar physics》1997,172(1-2):85-92
We investigate the influence of the solar atmospheric temperature stratification on the amplitude of waves at different heights and its dependence on frequency and wave number. Special interest is taken in the influence of atmospheric layers on the appearence of the recently observed p-mode crossing features and their location in the Fourier domain. We consider four stratification models. One of them is the standard model with convection-zone, VAL-atmosphere and corona. The others are modifications of this model in order to discuss the influence of specific layers of the atmosphere. The changes in the temperature structure significantly influence the velocity amplitude at certain frequency-wave number combinations at certain heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号