首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2017年1月1—5日,山东出现了一次大范围的平流辐射雾过程。利用山东地区自动气象站观测资料、青岛探空站资料、风廓线雷达资料和NCEP/NCAR再分析资料,通过分析此次连续大雾过程的大尺度环流背景场、温湿场特征,地面、高空气象要素条件,揭示了其形成原因、维持机制和消散机理。结果表明:中高纬度平直的大气环流、静稳的垂直结构是此次大雾形成的背景条件;水汽输送阶段变化造成的低层水汽浓度变化是大雾阶段变化的原因;两次弱低槽冷锋过程显著增加了雾的强度和范围,也使雾的性质由平流雾变为辐射雾。当低层水汽持续减少,中低层东风气流增强并破坏了大气的稳定层结时,大雾逐渐消散。  相似文献   

2.
人为大气污染物对一次冬季浓雾形成发展的影响研究   总被引:8,自引:2,他引:6  
贾星灿  郭学良 《大气科学》2012,36(5):995-1008
基于WRF/Chem模式和雾的观测资料,开展了包含和不包含人为污染排放源两种大气背景条件下的数值模拟对比试验,在此基础上探讨了人为污染物对2009年12月1日发生在我国华北和华东地区的一次浓雾天气过程的影响机理.结果表明,在考虑污染排放源时,模式模拟的雾的空间分布和强度变化与卫星、能见度仪和微波辐射计的观测更为接近.污...  相似文献   

3.
北京及其周边地区一次大雾的数值模拟及诊断分析   总被引:27,自引:7,他引:20  
利用美国国家大气研究中心研制的第5代中尺度模式系统MM5对2002年12月1~4日北京及其周边地区出现的一次大雾进行了数值模拟研究,模拟的雾出现和消散时间与实况一致。同时对雾形成和维持的机制进行了分析,讨论了雾发生发展阶段的物理过程,并对影响大雾过程的辐射条件做了敏感性试验。结果表明:形成大雾的主要原因是大气层结稳定,水汽充沛,地面的长波辐射冷却;近地面层微物理过程充分发展和雾顶的强烈辐射降温致使雾在垂直空间上出现爆发性发展;而太阳短波辐射对雾的减弱消散有着重要影响;深厚逆温层的维持对雾层长时间维持起着决定性作用。  相似文献   

4.
Radiative fog formation is a complex phenomenon involving local physical and microphysical processes that take place when particular meteorological conditions occur. This study aims at quantifying the ability of a regional numerical weather model to analyze and forecast the conditions favourable to radiative fog formation at an instrumental site in the Paris area. Data from the ParisFog campaign have been used in order to quantify the meteorological conditions favorable to radiative fog formation (pre-fog conditions) by setting threshold values on the key meteorological variables driving this process: 2-m temperature tendency, 10-m wind speed, 2-m relative humidity and net infrared flux. Data from the ParisFog observation periods of November 2011 indicate that use of these thresholds leads to the detection of 87 % of cases in which radiative fog formation was observed. In order to evaluate the ability of a regional weather model to reproduce adequately these conditions, the same thresholds are applied to meteorological model fields in both analysis and forecast mode. It is shown that, with this simple methodology, the model detects 74 % of the meteorological conditions finally leading to observed radiative fog, and 48 % 2 days in advance. Finally, sensitivity tests are conducted in order to evaluate the impact of using larger time or space windows on the forecasting skills.  相似文献   

5.
利用地面气象观测资料、高空探测资料、NCEP再分析资料、芜湖市边界层风廓线雷达资料和高速公路气象观测站资料,分析了2012年3月6日安徽省沿长江东部大范围雾天气过程形成的环流背景及雾生消的物理条件。结果表明:安徽沿江东部地区此次春季大范围雾的性质为辐射雾,雾发生时雾区上空为西到西南风为主,无明显冷空气影响,地面为高压控制的均压场,有利于雾的生成和维持。由雾生消的物理条件可知,近地面水汽条件较好和长波辐射降温造成的水汽凝结是此次大范围雾形成的重要原因。地面辐射降温形成的近地面逆温层有利于雾的维持,且随着近地面逆温层的抬升,雾层变厚并发展。低空的逆温层则形成稳定的层结,阻止水汽向上传输。近地面风速大小合适,风垂直切变小,低层有湍流,中层无明显上升运动,构成雾形成的有利动力条件;而湿层变厚又阻止了水汽向高层交换,有利于雾的生成和维持。日出后,太阳辐射增强,有利于雾发生和维持的地面辐射降温、逆温和动力条件逐渐消失,雾逐渐消散。  相似文献   

6.
Now more comprehensive cloud microphysical processes have been included in advanced three-dimensional mesoscale meteorological model such as PSU/NCAR MM5 model,so the model can be used in the prediction of fog.In this paper,MM5 was utilized to simulate an advection fog occurring in Nanling Mountain area.The simulated results were compared with the facts obtained by detailed observation experiment.The results showed that the simulation was successful in the following aspects:(1)the formation and development of the fog;(2)the temporal variation of the maximum liquid water content;(3)the diffusion of the cold air,especially the temporal variation of the ground temperature;and (4)the uplift of the air and the formation and development of the low-lever inversion.Besides,we did some sensitivity numerical experiments and discussed the effects of the radiation,the release of condensation latent heat and the change of soil moisture and temperature on the formation and development of fog.The success of numerical simulation experiment of fog has proved that the numerical forecasting of fog is promising.  相似文献   

7.
2006年12月24—27日大范围大雾过程数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
利用美国国家大气研究中心(NCAR)和宾夕法尼亚州立大学(PSU)联合研制的第5代中尺度气象模式系统MM5对2006年12月24—27日江苏及其周边地区出现的一次罕见持续性大雾进行数值模拟和诊断分析, 同时对影响大雾过程的辐射条件进行敏感性试验。结果表明:形成持续性大雾的主要原因是大气层结稳定, 水汽充沛, 同时, 地面和大气的长波辐射冷却是雾形成和发展的最重要因素; 而日出后太阳短波辐射加热和热量湍流输送是辐射雾消散的主要原因。在大雾发展和维持期间, 雾区近地层基本上为弱的水汽辐合区; 在大雾减弱和消散期间, 雾区大部分为弱的水汽辐散区。大范围的下沉辐散运动有利于中低层大气增温, 与近地层的辐射降温相配合, 加上近地层弱冷平流作用, 使低层大气降温, 有助于逆温形成, 而深厚逆温层的存在, 对雾区的长时间维持起着决定性作用。  相似文献   

8.
The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.  相似文献   

9.
Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and(3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods;it is maintained after sea fog rises into the stratus layer.  相似文献   

10.
济南一次雾过程的数值模拟试验和成因分析   总被引:2,自引:0,他引:2  
夏凡  杨晓霞 《气象科技》2017,45(1):165-171
基于中尺度天气研究与预报(Weather Research and Forecast,WRF)模式并选取T639模式数据作为初始条件和边界条件,对2015年11月13日至14日发生在济南的一次大雾天气进行数值模拟试验。利用常规观测资料对模拟效果进行检验分析,从不同方面分析这次雾的成因。结果表明:1稳定的大气层结、微弱的风速、较小的温度露点差为雾的形成提供了有利的气象条件;2WRF模式能够较好地模拟出雾形成和发展过程并且可以较为准确地模拟出能见度的强度;3近地层中性层结和较为充足的水汽对雾的形成和发展有重要作用;低云的存在推迟了白天雾的消散;4在雾形成和发展阶段,925hPa以下为辐合上升运动,之上为辐散下沉运动,这使得水汽集中在近地层,有利于雾的生成;5近地层的冷平流会增大相对湿度,是雾形成的有利条件;非绝热因子对这次雾的形成发展并没有起到关键作用。  相似文献   

11.
High latitude air–sea interaction is an important component of the earth’s climate system and the exchanges of mass and energy over the sea-ice zone are complicated processes that, at present, are not well understood. In this paper, we perform a series of numerical experiments to examine the effect of sea-ice concentration on the development of high latitude boundary-layer roll clouds. The experiments are performed at sufficiently high spatial resolution to be able to resolve the individual convective roll clouds, and over a large enough domain to be able to examine the roll’s downstream development. Furthermore the high spatial resolution of the experiments allows for an explicit representation of heterogeneity within the sea-ice zone. The results show that the sea-ice zone has a significant impact on the atmospheric boundary-layer development, which can be seen in both the evolution of the cloud field and the development of heat and moisture transfer patterns. In particular, we find the air-sea exchanges of momentum, moisture and heat fluxes are modified by the presence of the roll vortices (typically a 10% difference in surface heat fluxes between updrafts and downdrafts) and by the concentration and spatial distribution of the sea-ice. This suggests that a more realistic representation of processes over the sea-ice zone is needed to properly calculate the air-sea energy and mass exchange budgets.  相似文献   

12.
A New Algorithm for Sea Fog/Stratus Detection Using GMS-5 IR Data   总被引:7,自引:0,他引:7  
A new algorithm for the detection of fog/stratus over the ocean from the GMS-5 infrared (IR) channel data is presented. The new algorithm uses a clear-sky radiance composite map (CSCM) to compare the hourly observations of the IR radiance. The feasibility of the simple comparison is justified by the theoretical simulations of the fog effect on the measured radiance using a radiative transfer model. The simulation results show that the presence of fog can be detected provided the visibility is worse than 1 km and the background clear-sky radiances are accurate enough with known uncertainties. For the current study, an accurate CSCM is constructed using a modified spatial and temporal coherence method, which takes advantage of the high temporal resolution of the GMS-5 observations. The new algorithm is applied for the period of 10-12 May 1999, when heavy sea fog formed near the southwest coast of the Korean Peninsula. Comparisons of the fog/stratus index, defined as the difference between the measured and clear-sky brightness temperature, from the new algorithm to the results from other methods, such as the dual channel difference of NOAA/AVHRR and the earth albedo method, show a good agreement. The fog/stratus index also compares favorably with the ground observations of visibility and relative humidity. The general characteristics of the fog/stratus index and visibility are relatively well matched, although the relationship among the absolute values, the fog/stratus index, visibility, and relative humidity, varies with time. This variation is thought to be due to the variation of the atmospheric conditions and the characteristics of fog/stratus, which affect the derived fog/stratus index.  相似文献   

13.
上海城市湿岛与城区雾   总被引:2,自引:0,他引:2       下载免费PDF全文
本文根据1984年上海城区11个气象站和郊区10个气象站的观测记录和天气图,分析上海城乡水汽压的差异及其与城区雾的关系,发现在气团雾出现前,上海在20时和02时常出现三种城市湿岛,即凝露湿岛、结霜湿岛和雨天湿岛(含雨中湿岛和雨后湿岛两型)。在辐射雾和平流辐射雾(主要出现在秋冬季节)中还有雾天城市湿岛。以上各类湿岛形成都伴有城市热岛的存在。本文用大量观测事实论证了以上几种城市湿岛的存在及其形成过程,并指出城市湿岛的出现可以作为城市辐射雾、平流辐射雾和平流雾的先兆。  相似文献   

14.
The effects of uncertainty in the specification of surface characteristics on simulated atmospheric boundary layer (ABL) processes and structure were investigated using a one-dimensional soil-vegetation-boundary layer model. Observational data from the First International Satellite Land Surface Climatology Project Field Experiment were selected to quantify prediction errors in simulated boundary-layer parameters. Several numerical 12-hour simulations were performed to simulate the convective boundary-layer structure, starting at 0700 LT 6 June 1987.In the control simulation, measured surface parameters and atmospheric data were used to simulate observed boundary-layer processes. In the remaining simulations, five surface parameters – soil texture, initial soil moisture, minimum stomatal resistance, leaf area index, and vegetation cover – were varied systematically to study how uncertainty in the specification of these surface parameters affects simulated boundary-layer processes.The simulated uncertainty in the specification of these five surface parameters resulted in a wide range of errors in the prediction of turbulent fluxes, mean thermodynamic structure, and the depth of the ABL. Under certain conditions uncertainty in the specifications of soil texture and minimum stomatal resistance had the greatest influence on the boundary-layer structure. A lesser but still moderately strong effect on the simulated ABL resulted from (1) a small decrease (4%) in the observed initial soil moisture (although a large increase [40%] had only a marginal effect), and (2) a large reduction (66%) in the observed vegetation cover. High uncertainty in the specification of leaf area index had only a marginal impact on the simulated ABL. It was also found that the variations in these five surface parameters had a negligible effect on the simulated horizontal wind fields. On the other hand, these variations had a significant effect on the vertical distribution of turbulent heat fluxes, and on the predicted maximum boundary-layer depth, which varied from about 1400–2300 m across the 11 simulations. Thus, uncertainties in the specification of surface parameters can significantly affect the simulated boundary-layer structure in terms of meteorological and air quality model predictions.  相似文献   

15.
电线积冰物理过程与数值模拟研究进展   总被引:1,自引:0,他引:1  
杨军  谢真珍 《气象》2011,37(9):1158-1165
电线积冰对人们的日常生活、电力系统、通信系统等造成了巨大的影响,人们越来越关注电线积冰的形成条件及物理过程,包括气象条件、气流动力学、液滴运动轨迹以及热力学过程。通过外场观测、室内实验和数值模拟研究的不断开展,揭示出电线积冰质量增长过程决定于云降水粒子谱分布、碰撞效率、黏性率、冻结率、碰撞速度和角度等微物理参数,这些参数又受控于降水率、云雾含水量、温度、湿度、风向、风速等宏观气象条件。通过数值模式已可进行电线积冰量和积冰持续时间的定量研究和预测,进而在开发垂冰模式和形态模式等方面也取得了新的进展。在总结过去60多年来电线积冰物理机制和数值模拟研究主要成果的基础上,对开展进一步的深入研究进行了展望。  相似文献   

16.
雨后两次强浓雾的爆发性增强过程   总被引:2,自引:2,他引:0  
2015年12月在南京市郊进行雾的外场综合试验,观测得到20—21日雨后两次强浓雾的爆发性增强过程。利用常规气象资料、边界层廓线、雾滴谱等,分析此次典型雾过程的天气背景和边界层结构特征,探讨雾爆发性增强的原因。结果表明:雨后地表及近地层高湿环境为雾的形成提供了充足的水汽,南京冬季冷高压控制下稳定的天气层结,以及夜间的辐射冷却作用,极有利于辐射雾的产生。而雾的爆发性增强,主要和降温与增湿有关。晴天夜间地表向上长波辐射增强引起的强降温,日出后地面的强蒸发作用使得近地表水汽增多,都可直接引起雾的爆发性变浓。强的贴地逆温层的形成是雾爆发性增强的关键,易于近地面水汽的积累。而超低空急流的产生,有利于加速逆温层的贴地增强。  相似文献   

17.
Turbulence, Radiation and fog in Dutch Stable Boundary Layers   总被引:5,自引:1,他引:4  
The effect of longwave radiation on the structure the clear stable boundary layer (SBL) is examined. Special emphasis is given to radiative cooling near the surface and the top of the boundary layer and its impact on the heat flux profile. Further, the formation, growth and dissipation of fog in the SBL are studied both from observations and from a one-dimensional ensemble averaged turbulence closure model. The model is compared with detailed observations that were made for both a shallow (about 30 m) radiation fog and a deep (about 200 m) fog layer at the 200-m tower at Cabauw in the Netherlands. The model describes adequately the most important mechanisms occurring during the fog evolution. In this study special attention is given to the parameterization of the vegetation, which is important for a good representation of the (minimum) air temperature. The influence of turbulence transport, longwave radiative cooling and gravitational droplet settling on the fog evolution is described. The study demonstrates the need for more accurate measurements of turbulence quantities, especially the master length scale, in a variety of SBLs.  相似文献   

18.
Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog   总被引:1,自引:0,他引:1  
We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM2), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-m droplet diameter and liquid water content of 0.1 × 10–3 kg m–3;, the temperature profile within the fog becomes S shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-m diameter droplet, no strong convective instability layer forms, whereas for a 10-m diameter droplet a strong convective instability is observed.  相似文献   

19.
上海城市对雾的影响   总被引:3,自引:0,他引:3  
周淑贞  郑景春 《气象学报》1987,45(3):366-369
上海是我国最大的工商业城市,城市气候效应十分显著。本文应用上海气象台(位于市区龙华)气象资料和上海十个郊县气象资料,来分析上海城市对雾的影响。 1.上海城市对雾的生消影响 上海是我国沿海多雾城市之一。我们曾根据上海近24a(1956—1979)中出现的990次雾作了普查,按照成雾的物理机制不同,可以把上海的雾分成:辐射雾、锋面雾、平流雾和平流辐射雾四类。其中以辐射雾为最多,约占总雾日数的44.8%。形成各类雾的天气形势和有关气象要素的变化虽各不相同,  相似文献   

20.
The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号