首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》2004,19(7):1011-1037
Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed.  相似文献   

2.
The content of heavy metals and arsenic in sediments of karst streams in southern Missouri was investigated for its potential use as an indicator of pollution. A three-step sequential extraction procedure was utilized for this purpose. The amount of trace elements bound to each extraction phase gives insight of its availability and geochemical dependence. These results were complemented with analyses of correlation and spatial variability. Although sediments collected in this study remained below EPAs critical value guidelines, concentration in the mobile phases and higher normalized Mn values successfully identified sites with concentrations higher than background levels. Correlation among elements was poor in most cases; among the trace metals only Cu and Zn correlated while Pb correlated with Ca, Al, Mn and Fe. Spatial variability analysis confirmed that natural variation among adjacent sediment samples is a common occurrence. The urban spring Ward Branch showed the highest levels of Cr, Zn, Pb and As.  相似文献   

3.
This paper reports on the aquatic chemistry of trace elements in terms of spatial and temporal distribution, but also pollution sources in the transboundary watershed of the Seversky Donets River (Ukraine/Russia). Bed sediments and filtered water were collected from the Udy and Lopan Rivers at sites from the river source in the Belgorod region (Russia) to rural and urban areas in the Kharkiv region (Ukraine) in May and August 2009. Priority trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), an urban tracer (Ag) and additional metals (Co, Mo, V) and Th were measured in stream water and sediments. The low levels and variability of Th-normalized concentrations indicated the absence of geochemical anomalies in the upstream part of the rivers and suggested that these data represent a regional baseline for trace elements in bed sediments. In contrast, water and sediments within the city of Kharkiv were contaminated by Ag, Pb, Cd, Cu, Cr and Zn, which are mainly attributed to municipal wastewater inputs and urban run-off. Results of the environmental quality assessment showed that element concentrations in the sediments can be considered as potentially toxic to aquatic organisms in sites downstream of the wastewater discharges.  相似文献   

4.
泉州城市表层土壤中金属元素来源分析   总被引:4,自引:0,他引:4  
采集了泉州市47个城市表层土壤样,用ICP-MS检测技术,研究了土壤中26种重金属元素的富集特征、环境风险及污染来源。富集因子结果显示,与泉州市土壤背景值相比,Li、Ni、Co、Cu、Zn、Sr、Cd、Sn、Sb、Pb、Ta在城市表层土壤中的富集因子大于1,而Ti、V、Cr、Fe、Mn、Ga、Ge、As、Rb、Y、Nb、Cs、Bi、Th、U的富集因子小于1。从功能区上看,工业区污染最为严重,其次依次为农业区、商住区、城市绿地、交通区。环境风险指数表明,泉州市城市表层土壤中重金属污染具有极高的环境风险,达到极高风险级别的样品占48.9%。采用多元统计分析方法对土壤样品中各金属元素来源进行解析,结果表明,研究区城市表层土壤中金属元素总体可分成5类:①交通运输类(Sn、Pb、Sb、Bi);②工业因子类(Cr、Co、Ni、Fe、Mn);③自然因子类别(Ga、Ge、Ti、V、Cu);④混合因子类别(Zn、Cd、Sr、Th、U、Y、As、Cs、Nb、Ta、Rb);⑤生活垃圾因子类别(Li)。  相似文献   

5.
The Linares region (southern Spain) has been subjected to two important sources of pollution: the intensive mining works and the urban-industrial activity. To obtain a geochemical characterisation of the soil, 31 trace elements were analysed and 669 soil samples were collected. By means of clustering analysis, we identified groups of elements and grid squares in which relations could be established concerning soil lithology, urban and industrial activities and the degree of pollution impact; in addition, we were able to characterise the geochemical background of the study area. The multivariate study led us to identify four factors. Particularly important was factor 2, which represented the elements associated with mineral paragenesis (Cu, Pb, As, Co, Mn, Zn, Sn, Ba). This factor also contains elements related with an urban-industrial activity, such as Pb, Cu, Zn, As and Ba. Furthermore, we identified factor 4, associating Ni, V and Cr, and which is related to the use of fuels.  相似文献   

6.
刘玖芬 《地质与勘探》2014,50(Z1):1382-1387
本文采用四酸溶样ICP6300电感耦合等离子体发射光谱法测试了新疆哈拉奇地区水系沉积物样品中的Li P Ti V Cr Mn Co Ni Cu Zn Sr Y Nb Mo Ba La Pb B W Sn Cd 21种微量元素,明确了该方法测试样品中的Li P Ti V Cr Mn Co Ni Cu Zn Sr Y Nb Mo Ba La 16个元素的检出限、准确度、精密度满足规范(DZ/T0130.2006-2006)要求,而Pb B Cd Sn W5个元素测试质量不能满足规范要求,并对新疆哈拉奇地区水系沉积物采样粒度样品进行了分析测试,验证了该区化探扫面选择10-80目粒度是合适的,但在异常查证工作中要选择10-60目采样粒度更合理。  相似文献   

7.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

8.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

9.
Samples collected from a 0.87 m snow pit at a high altitude site in the Cho Oyu range, Himalayas were measured for V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sn, Sb, Ba, Tl, Pb, Bi, Th, and U using inductively coupled plasma mass spectrometry. In addition, major ions, oxygen stable isotopes, and microparticles were also measured to assist the interpretation of seasonal variation of trace elements. The trace elements show a distinct seasonality, i.e., higher concentrations during the non-monsoon season than those during the monsoon season. Significant correlation is observed between Ba and the other trace elements. Crustal enrichment factor (EFc) analysis indicates that V, Mn, Co, Ni, Rb, Sr, and Th originate mainly from crustal dust, while anthropogenic inputs make an important contribution to the other trace elements (i.e., Cu, Zn, As, Cd, Sn, Sb, Ti, Pb, Bi, and U). Evidence from air mass back trajectories suggests that atmospheric trace element pollution reaching the studied area is transported dominantly by Indian summer monsoon during the monsoon season, while it is transported mainly by the westerlies during the non-monsoon season.  相似文献   

10.
The geochemical characteristics of trace metals (As, Cr, Co, Cd, Cu, Mn, Ni, Pb, V and Zn) in PM10 in Wuhan, the biggest metropolitan in central China, as well as their sources and contributions were analyzed. As PM10 has been the principal contaminant of air in Wuhan for years, concentrations of trace metals were measured in PM10 using high-volume samplers at one urban (Hankou) and one industrial (Changqian) site in Wuhan between September 2003 and September 2004. Based on the results, PM10 in Wuhan is characterized by relatively high levels of As, Cd, Mn, Pb and Zn compared with other Asian cities. The time-series of these elements indicated that As, Cu and Zn at both sites have similar trends, whereas Pb levels showed different patterns due to different emission sources. Factor analysis was applied to the datasets focusing on the apportionment of the mass of selected trace metals. Results indicate that Pb, Cd and As have a common source (smelting) at both sites, whereas the sources of Ni vary from coal combustion and steel in Changqian to mineral and traffic in Hankou.  相似文献   

11.
The results of study of the Bobruisk ring structure (Republic of Belarus) containing ~80 rare rockforming and accessory minerals are reported. Among them are native (Fe, Cu, Sn, Zn, Pb, Ag, Mo, W, Al) and intermetallic (Fe, Cr, Ni, Mo, B, N, C, Si) compounds, natural alloys (Fe–Cr, Fe–Cr–Mo–W–B; brass (Cu–Zn–Pb); and bronze (Sn–Pb–Zn–Cu)). They are observed as segregations of various shapes and sizes, as well as their aggregates. The formation of mineralization is controlled by reduced mantle fluids enriched in H2, CH4, CO, Si, N, and O and stimulating accumulation of rare elements as native and intermetallic phases, alloys, rather than isomorphic impurities in minerals.  相似文献   

12.
In China, soil pollution is very serious, which has jeopardized the ecology, food safety, the people's health, and even the sustainable development of agriculture. In order to investigate the soil pollution situation, a total of 874 agricultural and non-agricultural topsoil samples were collected from Dexing area, northeast of Jiangxi Province, China. The total elemental concentrations of 17 elements (As, Hg, Mo, Cd, Cr, Zn, Cu, Mn, Ti, Pb, Fe, Ca, K, Si, Al, Mg, and Na) were determined. The geochemical background and threshold was predicted with the method of the median ± median absolute deviation (MAD). The agricultural soil median concentration of trace elements was similar to that of the non-agricultural soil. In contrast to Jiangxi soil background of trace elements, the geochemical background of the study area was obviously higher. The maps of the pollution indices for As, Cd, Cr, Cu, Hg, Mn, Mo, Pb, Ti and Zn of non-agricultural soil and agricultural soils in the study area, showed that the highest level of pollution is distributed near and along the Lean River, especially in the neighboring and surrounding Dexing and Leping mining area.  相似文献   

13.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

14.
Six peat samples obtained from the Holocene and the Weichselian of the Philippi peat deposit, eastern Macedonia, Greece, were analyzed for 48 trace elements by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS). The ash contents of these samples were also determined. Most of the trace elements are associated with the minerals in the peat, while Ge, Mo, Pb, Se, Ta, Tl, U, and W display a greater affinity with the organic matter. Compared with crustal averages (Clarke concentrations), the Philippi peat is enriched in some elements (Ag, As, Au, Cd, Mo, Se, Te, U, and W) because of the respective mineralizations in the area. The Philippi peat is also enriched in Cr, Cu, Mo, Pb, Sc, Sn, T, V, Y, and Zn in comparison with typical fen peats, as well as in As, Cr, Mo, Se, and U in comparison with typical coals. Climatic and hydrogeological conditions strongly influenced the peat-forming environment resulting in a differentiation between Holocene and Weichselian peat. Generally, the Holocene peat contains lower concentrations of trace elements in the northern and southern part of the fen, than the Weichselian one. The opposite trend is observed in the fen area close to the western basin margins.  相似文献   

15.
To investigate trace elements in wet precipitation over the Tibetan Plateau (TP), a total of 79 event-based precipitation samples were collected from September 2007 to September 2008 at Nam Co Station. Samples were analyzed for concentrations of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb using inductively coupled plasma-mass spectrometry (ICP-MS). The annual volume-weighted concentrations of elements were generally comparable to other background sites, and much lower than urban areas. The enrichment factors (EF) showed that, in comparison with the Tibetan soils, the wet precipitation had elevated concentrations of Cr, Co, Ni, Cu, Zn, Cd and Pb, probably indicating their anthropogenic origins. Other elements (Al, Fe, Mn and V) with enrichment factor value of <10 may derive mainly from crustal sources. The principal component analysis further confirmed the two different groups of elements in wet deposition samples. The backward trajectories were calculated for each precipitation event using the NOAA HYSPLIT model. The results indicated significant differences of EF for trace elements of anthropogenic origin between the summer monsoon and non-monsoon seasons. The data obtained in the present study indicated that pollutants can affect remote high altitude regions like the Tibetan Plateau through long-range transport, especially in the summer monsoon season.  相似文献   

16.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

17.
Historically, a significant level of mining activity has taken place in the batholite-related metalogenic enclave of Linares (Jaén province, Spain), associated with Pb–Ag, Cu, Zn and Fe sulphides and Ba sulphate mineralization, though mining here has now been abandoned. Additionally, the area features a significant amount of urban, industrial and agricultural activities. These considerations, taken together, explain the need to assess the levels of concentration of trace elements and to determine their relationship with geogenic and anthropogenic factors. For geochemical characterisation of the soil, the region has been divided into 126 grid squares with an area of 1 km2. For each grid square, 32 trace elements have been analysed. Elemental concentrations of Cu, Pb, Zn, As and Mn have been included in statistical analyses. According to the reference levels established by the Regional Government (Junta de Andalucía), soils in a large part of the study area require amendment applications. The comparison of the mean content for each grid square with the reference levels reveals a significant degree of contamination of the soil by Cu (719 mg kg−1), Pb (22,964 mg kg−1) and As (100 mg kg−1) in those grid squares affected by metallurgic activities. By means of factor analysis, four scores have been identified which together account for 80% of the variance observed. The first score is highly correlated with the logarithms of the variables Fe, Th, La, Ti, Al, Na, K, Zr, Y, Nb, Be and Sc. It is a “natural” factor that indicates the type of soil matrix (fundamentally granites and, to a lesser degree, Triassic materials). The second score shows high correlation with the logarithms of the variables Mo, Cu, Pb, Zn, Ag, Co, Mn, As, Cd, Sb, Ba, W and Sn, and is the “metallization” factor related to the mineralization that has been exploited. The third score is mainly determined by the logarithms of the variables Sr, Ca and Mg. This is a “natural” factor that indicates a type of carbonate soil matrix (Miocene). Finally, the fourth factor groups the logarithms of the variables Ni, V and Cr, elements that are associated with the combustion of fossil fuels. Analysis of the patterns of each of the factors identified enabled achieving a global characterisation of the study area. Cluster analysis of the observations showed there to be five clusters relating to the grid squares, differentiated by lithologies and degrees of contamination. These clusters are used to determine the background of granite and to calculate the anomalous load.  相似文献   

18.
The Cr and Ni contents are high in the Eocene lignite of the Shenbei coalfield, which is a small intracontinental basin located in Liaoning Province, China. In this paper, we studied the distribution, origin and occurrence of Cr, Ni and other hazardous trace elements in the Shenbei lignite on the basis of coal petrology, and geochemistry of the lignite and combustion products. The following conclusions on the Shenbei lignite can be drawn: (1) The dominant maceral group in the Shenbei coal is huminite (humodetrinite), accounting for 96%–99% of the total maceral. Inertinite content is less than 1%. Liptinite content (sporinite and cutinite) is 0.2–1.6%. Common minerals in the Shenbei lignite include clay minerals (kaolinite), pyrite and quartz, and calcite and siderite. Chromite is not present in the lignite. (2) Potentially hazardous trace elements such as Co (22 μg/g), Cr (79 μg/g), Cu (63 μg/g), Zn (93 μg/g), V (88 μg/g) and Ni (75 μg/g) are strongly enriched in the Shenbei lignite compared with average concentration of trace elements in the Chinese coal and worldwide lignite. These elements are mainly associated with fulvic acid (FA) and/or coal organic macromolecular compounds in most of the studied lignite samples, indicating an organic association and enrichment of these elements in the Shenbei lignite. (3) Unusually high trace elements contents in the Shenbei lignite are derived mainly from the olivine basalt (country rock of coal basin) that consists of 52.7% plagioclase, 17.8% pyroxene, 14% olivine and 15.5% Ti–Fe oxide minerals. These olivine basalts have higher Cr, Ni, Pb and Zn contents than other types of rock and worldwide basalts do. (4) Fly ash of the Shenbei lignite, with 90% 1–50 μm amorphous particles and 8% 1–10 μm cenosphere, has high contents of Zn (23,707 μg/g), Be (12 μg/g), Sr (1574 μg/g), Pb (486 μg/g) and Cr (349 μg/g). In particular, the ferruginous micro-cenoshperes contain 1–12.79% Zn. Fine bottom ash (<0.031mm) of the Shenbei lignite has higher contents for most of the elements with the exception of Mo, Sn and Zn. Therefore, the potentially environmental and health impact of the fly ash and fine bottom ash should constitute a major concern.  相似文献   

19.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

20.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号