首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We discuss the spectra and positions of the meter-decameter wavelength radio sources associated with the 5 September 1973 flare. We discuss the evolution of the size of the type II burst source and show that it fluctuates by a factor of 10, or larger. Consequently, the potential and kinetic energies associated with the shock are uncertain by the same factor. By comparing the positions of the type II and type III sources we conclude that while the shock wave associated with the type II was guided along high loops, the type III electrons were injected along open field lines which diverged within a short height in the corona. The characteristics of a particularly interesting type III burst with a low-frequency cut-off are discussed. We argue that nearby loops were not disrupted by the shock and that the energetic electrons produced during the event must have been injected at several sites and guided along open field lines at large distances from the flare to produce type III bursts.  相似文献   

2.
《New Astronomy Reviews》2002,46(2-7):343-347
We present a comparison of the optical and radio properties of radio sources inside and outside the cores of rich clusters from combined samples of more than 380 radio sources. We also examine the nature of FR I and FR II host galaxies, and in particular, we illustrate the importance of selection effects in propagating the misconception that FR I’s and FR II’s are found in hosts of very different optical luminosity. Given the large sample size, we also discuss the power-size (P, D) distributions as a function of optical luminosity.  相似文献   

3.
4.
《New Astronomy Reviews》2002,46(2-7):357-360
We highlight a group of peculiar double radio sources we christen HYMORS: HYbrid MOrphology Radio Sources. These HYMORS appear to have an FR I type radio lobe on one side of the active nucleus but an FR II type lobe on the opposite side. Such objects range in size from ∼0.01 Mpc to ∼1 Mpc. The mere existence of these hybrid sources causes severe difficulties for models which attribute the differences between FR I and FR II radio sources to some intrinsic property of the compact central engine, or the composition of the jet plasma. HYMORS support models for the FR dichotomy based upon the interaction of the jet plasma with the ambient medium, in that asymmetries in the external environment could more naturally produce the observed hybrid morphologies.  相似文献   

5.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

6.
The distribution of relative position angles between the integrated intrinsic polarization (perpendicular to the direction of the intrinsic magnetic field) and the major axis of an extragalactic radio source were studied for different types of radio sources. Data for 280 extragalactic radio sources were used and it was found that there are large differences in the relative orientation of different types of radio sources. The directions of the intrinsic integrated magnetic fields correlate with the major radio axes of more elongated radio sources (K > 2.5, where K is the ratio of lengths of the major and minor axes of the radio images) and for radio sources of type FR II, whereas for less elongated objects (K < 2.5) and for radio sources of type FR I the magnetic fields do not correlate at all with the radio axes. An alternative mechanism for the formation of a radio galaxy from relativistic plasma ejected from the central part of an optical galaxy and moving in its large-scale, dipole magnetic field may be a theoretical basis for classification with respect to the elongation parameter K of the radio image.  相似文献   

7.
We discuss simultaneous visible-light and radio observations of a coronal transient that occurred on 9 April, 1980. Visible-light observations of the transient and the associated erupting prominence were available from the Coronagraph/Polarimeter carried aboard SMM, the P78-1 coronagraph, and from the Haleakala Observatory. Radio observations of the related type III-II-IV bursts were available from the Clark Lake and Culgoora Observatories. The transient was extremely complex; we suggest that an entire coronal arcade rather than just a single loop participated in the event. Type III burst sources observed at the beginning of the event were located along a nearby streamer, which was not disrupted, but was displaced by the outmoving loops. The type II burst showed large tangential motion, but unlike such sources usually do, it had no related herringbone structure. A moving type IV burst source can be associated with the most dense feature of the white-light transient.  相似文献   

8.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

9.
Gigahertz-peaked spectrum (GPS) radio sources are thought to be young objects which later evolve into Fanaro–Riley type I (FR I) and FR II radio galaxies. We have used the Australia Telescope 20 GHz (AT20G) survey catalogue to select a uniform sample of GPS sources with spectral peaks above 5 GHz, which should represent the youngest members of this class. In this paper, we present e-VLBI observations of 10 such objects which are associated with nearby  ( z < 0.15)  galaxies and so represent a new population of local, low-power GPS sources. Our e-VLBI observations were carried out at 4.8 GHz with the Australia Telescope Long Baseline Array (LBA) using a real-time software correlator. All 10 sources were detected, and were unresolved on scales of ∼100 mas, implying that they are typically less than 100 pc in linear size.  相似文献   

10.
We present preliminary results on the apparent angular size of the sources of four type III bursts observed between 3500 and 50 kHz from the IMP-6 spacecraft. The observations were made with a dipole rotating in the plane of the ecliptic where the sources are assumed to be. The apparent angular sizes obtained are unexpectedly large. We discuss different explanations for the results. It seems that the scattering of radio waves by electron density inhomogeneities is the most likely cause.We report a temporal increase of the apparent angular size of the source during the burst lifetime for some bursts. From its characteristics it apears to be a real effect.  相似文献   

11.
The Culgoora radioheliograph has been modified for observing at 327.4 MHz, which is in addition to the three frequencies (43.25, 80, and 160 MHz) previously available. At the new frequency the array beamwidth is 56, which represents the highest resolution yet available for metre-wavelength solar mapping.At 327.4 MHz the sources of radio emission are mainly in the lowest layers of the corona. Some preliminary four-frequency observations have been made of type I storms. It is found that the source size generally decreases with increasing observing frequency. This result confirms earlier suggestions that the sources of both type I and type III emission are contained in structures whose boundaries diverge outwards in the corona.  相似文献   

12.
We discuss the properties of compact nuclear radio components in Seyfert galaxies from the extended 12-μm AGN sample of Rush et al. Our main results can be summarized as follows.
Type 1 and type 2 Seyferts produce compact radio components which are indistinguishable in strength and aspect, indicating that their central engines are alike, as proposed by the unification model. Infrared IRAS fluxes are more closely correlated with low-resolution radio fluxes than high-resolution radio fluxes, suggesting that they are dominated by kiloparsec-scale, extranuclear emission regions; extranuclear emission may be stronger in type 2 Seyferts. Early-type Seyfert galaxies tend to have stronger nuclear radio emission than late-type Seyfert galaxies. V-shaped extended emission-line regions, indicative of 'ionization cones', are usually found in sources with large, collimated radio outflows. Hidden broad lines are most likely to be found in sources with powerful nuclear radio sources. Type 1 and type 2 Seyferts selected by their IRAS 12-μm flux densities have well-matched properties.  相似文献   

13.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

14.
Meter-wavelength observations are presented for the solar radio storm of August 17–22, 1968. The data comprise dynamic spectra and high-resolution brightness distributions from the 80 MHz radioheliograph.It is found that the storm consisted essentially of type III bursts at the lower frequencies and type I at the higher frequencies; the transition, usually near 60 MHz, was fairly sharp. The type I source was located over an active region associated with a large sunspot group. The type III position was displaced about 0.5 R transversely from the type I, in a region of low magnetic field.The evident close association between the two types of emission can best be explained by disturbances originating in the type I region, propagating outwards through a region of weak magnetic field, and triggering an electron acceleration process, probably at the cusp of a helmet structure. The observed frequency and spatial relationship between the type I and type III components in events of this kind follow as a natural consequence of this model.A comparison of these results with the hectometer-wavelength satellite observations of the 1968 August event makes possible a qualitative estimate of the outward path of the type III exciters through the corona, and it is apparent that below the solar wind region of the corona this path departs considerably from the radial direction.  相似文献   

15.
Symbiotic stars that are strong radio sources and have cool dust emitting in the infrared are expected to have extended emission nebulae around them. In order to search for such emission nebulae, we have carried out CCD imaging of three symbiotic stars (R Aqr, RR Tel and H1-36) with narrow-band filters centred at the emission lines of [O III] λ5007, Hα λ6563, [N II] λ6584, [S II] λ6717 + 6731. RR Tel and H1-36 images do not show any extended nebulosities around them. The CCD image of the R Aqr nebulosity in the high excitation [O m] line is different from its image in Hα and the low excitation lines of [N II] and [S II] indicating ionization-stratification in the nebula. In H1-36 the optical nebulosity (if it exists) is smaller than ∽2 arcsec while the radio image size is known to be large (∽5 arcsec). This behaviour is opposite to that seen in R Aqr in which the radio emission comes from the core region of a much larger optical nebulosity. Interstellar and/or circumstellar extinctions are suggested to be responsible for this difference  相似文献   

16.
We present deep, multi-Very Large Array configuration radio images for a set of 18 quasars, having redshifts between 0.36 and 2.5, from the 7C quasar survey. Approximately one quarter of these quasars have Fanaroff–Riley type I (FR I) type twin-jet structures and the remainder are a broad range of wide angle tail, fat double, classical double, core-jet and hybrid sources. These images demonstrate that FR I quasars are prevalent in the Universe, rather than non-existent as had been suggested in the literature prior to the serendipitous discovery of the first FR I quasar a few years ago, the optically powerful 'radio-quiet' quasar E 1821+643.
Some of the FR I quasars have radio luminosities exceeding the traditional FR I/FR II break luminosity; however, we find no evidence for FR II quasars with luminosities significantly below the break. We consider whether the existence of such high-luminosity FR I structures is due to the increasingly inhomogeneous environments in the higher redshift Universe.  相似文献   

17.
Multifrequency radio observations of the radio galaxy 3C 459 using MERLIN, VLA and the EVN and an optical Hubble Space Telescope ( HST ) image using the F702W filter are presented. The galaxy has a very asymmetric radio structure, a high infrared luminosity and a young stellar population. The eastern component of the double-lobed structure is brighter, much closer to the nucleus and is significantly less polarized than the western one. This is consistent with the jet on the eastern side interacting with dense gas, which could be due to a merged companion or dense cloud of gas. The HST image of the galaxy presented here exhibits filamentary structures and is compared with the MERLIN 5-GHz radio map. EVN observations of the prominent central component, which has a steep radio spectrum, show a strongly curved structure suggesting a bent or helical radio jet. The radio structure of 3C 459 is compared with other highly asymmetric, Fanaroff–Riley II radio sources, which are also good candidates for studying jet–cloud interactions. Such sources are usually of small linear size and it is possible that the jets are interacting with clouds of infalling gas that fuel the radio source.  相似文献   

18.
P. A. Robinson 《Solar physics》1993,146(2):357-363
Fluctuations in type III beams are produced by quasilinear interactions with clumpy Langmuir waves in type III radio sources. The properties of these fluctuations are estimated and shown to yield Langmuir growth rates and growth-rate fluctuations consistent with those required by the recent stochastic-growth theory of type III radio bursts, with observations, and with existing theoretical constraints. This strengthens the basis of stochastic-growth theory and provides an essential consistency test for this model.  相似文献   

19.
We have analysed VSOP and global VLBI data at 5 GHz and VLBA + Effelsberg data at 15 GHz for 2021+614. By identifying the core as being between two bright hotspots, we show that 2021+614 is a compact symmetric object of size 40 pc. From comparison with earlier observations we deduce an apparent age of 375 yr for 2021+614. This provides additional support for the contention that compact symmetric radio objects associated with galaxies are in fact young radio sources and the possible precursors of the classical FR I or FR II radio galaxies.  相似文献   

20.
We study interplanetary (IP) solar radio type II bursts from 2011?–?2014 in order to determine the cause of the intense enhancements in their radio emission. Type II bursts are known to be due to propagating shocks that are often associated with fast halo-type coronal mass ejections (CMEs). We analysed the radio spectral data and the white-light coronagraph data from 16 selected events to obtain directions and heights for the propagating CMEs and the type II bursts. CMEs preceding the selected events were included in the analysis to verify whether CME interaction was possible. As a result, we were able to classify the events into five different groups. 1) Events where the heights of the CMEs and type II bursts are consistent, indicating that the shock is located at the leading front of the CME. The radio enhancements are superposed on the type II lanes, and they are probably formed when the shock meets remnant material from earlier CMEs, but the shock continues to propagate at the same speed. 2) Events where the type II heights agree with the CME leading front and an earlier CME is located at a height that suggests interaction. The radio enhancements and frequency jumps could be due to the merging process of the CMEs. 3) Events where the type II heights are significantly lower than the CME heights almost from the start. Interaction with close-by streamers is probably the cause for the enhanced radio emission, which is located at the CME flank region. 4) Events where the radio enhancements are located within wide-band type II bursts and the causes for the radio enhancements are not clear. 5) Events where the radio enhancements are associated with later-accelerated particles (electron beams, observed as type III bursts) that stop at the type II burst emission lane, and no other obvious reason for the enhancement can be identified.Most of the events (38%) were due to shock–streamer interaction, while one quarter of the events was due to possible CME–CME interaction. The drift rates, bandwidth characteristics, or cross-correlations of various characteristics did not reveal any clear association with particular category types. The chosen atmospheric density model causes the largest uncertainties in the derived radio heights, although in some cases, the emission bandwidths also lead to relatively large error margins.Our conclusion is that the enhanced radio emission associated with CMEs and propagating shocks can have different origins, depending on their overall configuration and the associated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号