首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have computed and studied the mosaic correlation maps of the ILC WMAP microwave background data with the positions of infrared and submillimeter sources. Using the histograms of the signal values in pixels and angular power spectra, we studied the statistical properties of these maps. We discovered similar behavior of a number of harmonics in the maps of correlations with the FSC IRAS, 2MASX and Planck catalog objects. The most prominent multipoles among them, which may reflect the actual distribution of radiation sources are the = 6 for the FSC and Planck data, and = 3 for the Planck source data.  相似文献   

2.
We have calculated mosaic correlation maps based on the ILCWMAP microwave background data and infrared and optical extragalactic object positions according to the 2MRS catalog and the SDSS survey respectively. Using the histograms of signal values in pixels and angular power spectra, we have investigated the statistical properties of these maps. Evolution power spectra of correlation maps, depending on z, were built. We show that there are certain correlation scales (2°–3°) at different redshifts (z = 1–2), which can match the size of the maximal heterogeneity cell (60–90 Mpc) during different cosmological epochs.  相似文献   

3.
We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.  相似文献   

4.
We have constructed the first all-sky cosmic microwave background (CMB) temperature and polarization lensed maps based on a high-resolution cosmological N -body simulation, the Millennium Simulation (MS). We have exploited the lensing potential map obtained using a previously developed map-making procedure which integrates along the line-of-sight the MS dark matter distribution by stacking and randomizing the simulation boxes up to   z = 127  , and which semi-analytically supplies the large-scale power in the angular lensing potential that is not correctly sampled by the N -body simulation. The lensed sky has been obtained by properly modifying the latest version of the LensPix code to account for the MS structures. We have also produced all-sky lensed maps of the so-called  ψ E   and  ψ B   potentials, which are directly related to the electric and magnetic types of polarization. The angular power spectra of the simulated lensed temperature and polarization maps agree well with semi-analytic estimates up to   l ≤ 2500  , while on smaller scales we find a slight excess of power which we interpret as being due to non-linear clustering in the MS. We also observe how non-linear lensing power in the polarized CMB is transferred to large angular scales by suitably misaligned modes in the CMB and the lensing potential. This work is relevant in view of the future CMB probes, as a way to analyse the lensed sky and disentangle the contribution from primordial gravitational waves.  相似文献   

5.
We compare the anisotropic properties of the cosmic microwave background (CMB) maps constructed based on the data of NASA’s WMAP (9th year of observations) and ESA’s Planck (2015 release) space missions. In our analysis, we use two two-dimensional estimators of the scatter of the signal on a sphere, which amount to algorithms of mapping the ratio of the scatter in the Northern and Southern hemispheres depending on the method of dividing (specifically, rotating and cutting) the sky into hemispheres. The scatter is computed either as a standard deviation σ, or as the difference between the minimum and maximum values on a given hemisphere. Applying both estimators to the CMB anisotropy datameasured by two spacemissions, Planck and WMAP, we compared the variations of the background at different angular scales.Maps with a resolution of l ≤ 100 show that the division into regions with different levels of statistical anisotropy lies close to the ecliptic plane, and after preliminary removal of the l ≤ 20 harmonics from the CMB data, the anisotropic signal related to the Galaxy begins to dominate.  相似文献   

6.
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth–Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the “Dark Ages”, giving a value for the electron scattering optical depth of 0.17 ± 0.04. The simplest ΛCDM model with n=1 and Ωtot=1 fixed provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.  相似文献   

7.
We use the large cosmological Millennium Simulation (MS) to construct the first all-sky maps of the lensing potential and the angle, aiming at gravitational lensing of the cosmic microwave background (CMB), with the goal of properly including small-scale non-linearities and non-Gaussianity. Exploiting the Born approximation, we implement a map-making procedure based on direct ray tracing through the gravitational potential of the MS. We stack the simulation box in redshift shells up to z ∼ 11, producing continuous all-sky maps with arcmin angular resolution. A randomization scheme avoids the repetition of structures along the line of sight, and structures larger than the MS box size are added to supply the missing contribution of large-scale (LS) structures to the lensing signal. The angular power spectra of the projected lensing potential and the deflection-angle modulus agree quite well with semi-analytic estimates on scales down to a few arcmin, while we find a slight excess of power on small scales, which we interpret as being due to non-linear clustering in the MS. Our map-making procedure, combined with the LS adding technique, is ideally suited for studying lensing of CMB anisotropies, for analysing cross-correlations with foreground structures, or other secondary CMB anisotropies such as the Rees–Sciama effect.  相似文献   

8.
We present results of JCMT and BIMA CO J = 2 ? 1 polarization observations towards the Orion KL/IRc2 high mass star forming region. The linear polarization fraction of the JCMT CO J = 2 ? 1 spectra presents a clear decrease towards the center of the line, as expected, due to the increase of the optical depth. The position angle remains constant along the spectral line, except at the line center, where the highest optical depth and lower fractional polarization are measured. The combined BIMA and JCMT maps of the redshifted and blueshifted CO emission show a uniform polarization pattern that does not coincide with previous dust continuum observations at similar angular resolution. This suggests that the CO and dust are tracing different spatial components along the line of sight.  相似文献   

9.
We use hydrodynamical N -body simulations to study the kinetic Sunyaev–Zel'dovich effect. We construct sets of maps, one square degree in size, in three different cosmological models. We confirm earlier calculations that on the scales studied the kinetic effect is much smaller than the thermal (except close to the thermal null point), with an rms dispersion smaller by about a factor of 5 in the Rayleigh–Jeans region. We study the redshift dependence of the rms distortion and the pixel distribution at the present epoch. We compute the angular power spectra of the maps, including their redshift dependence, and compare them with the thermal Sunyaev–Zel'dovich effect and with the expected cosmic microwave background anisotropy spectrum as well as with determinations by other authors. We correlate the kinetic effect with the thermal effect both pixel-by-pixel and for identified thermal sources in the maps to assess the extent to which the kinetic effect is enhanced in locations of strong thermal signal.  相似文献   

10.
We analyze the angular structure of the 21-cm interstellar neutral hydrogen emission at six and seven declinations in the northern (published previously) and southern polar caps of the Galaxy (Galactic latitudes from ?40° to ?90°), respectively, with an extent of 90° in right ascension. The RATAN-600 radio telescope has a beam width averaged over these regions of 2.′0×30′. One-dimensional power spectra for the angular distribution of interstellar neutral hydrogen emission were computed in each 6.3-km s?1-wide spectral channel by using the standard Fast Fourier Transform (FFT) code and were smoothed over 1h in right ascension. The Galactic latitude dependence of the mean parameters for the sky distribution of H I line emission at high latitudes was found to correspond to the distribution of gas in the form of a flat layer only in the northern region, while in the southern cap, the gas distribution is much less regular. In addition, the mean H I radial velocities are negative everywhere (?3.7±3.0 km s?1 in the north and ?6.0±2.4 km s?1 in the south). The power spectra of the angular fluctuations in the range of angular periods from 10′ to 6° appear as power laws. However, the spectral indices change greatly over the sky: from ?3 to ?1.2; on average, as the Galactic latitude increases and the H I column density decreases, the fluctuation spectrum of the interstellar gas emission becomes flatter. In the northern polar region, this behavior is much more pronounced, which probably stems from the fact that the gas column density in the south is generally a factor of 2 or 3 higher than that in the north. Therefore, the spectra are, on average, also steeper in the south, but the dependence on Galactic latitude is weaker. Using simulations, we show that the observed power-law spectrum of the H I emission distribution can be obtained in terms of not only a turbulent, but also a cloud model of interstellar gas if we use our previous spectra of the diameters and masses of H I clouds.  相似文献   

11.
We examine the effect produced by the variation of cosmological parameters on the power spectra of one-dimensional cross-sections of the cosmic microwave background maps in a narrow range of spatial frequencies. Variation of the Ω b and ΩΛ density parameters has little effect on the power spectrum deviation from the one expected within the ΛCDM model. At the same time, variations in the spectral index of primordial fluctuations significantly affect the amplitude of the power spectrum of one-dimensional cross-sections. We observe a lack of signal generated by the even harmonics in the ILC map as compared with model expectations.  相似文献   

12.
The remarkable improvement in the estimates of different cosmological parameters in recent years has been largely spearheaded by accurate measurements of the angular power spectrum of cosmic microwave background (CMB) radiation. This has required removal of foreground contamination as well as detector noise bias with reliability and precision. Recently, a novel model-independent method for the estimation of CMB angular power spectrum from multi-frequency observations has been proposed and implemented on the first year WMAP (WMAP-1) data by Saha et al. [Saha, R., Jain, P., Souradeep, T., 2006. ApJL, 645, L89]. We review the results from WMAP-1 and also present the new angular power spectrum based on three years of the WMAP data (WMAP-3). Previous estimates have depended on foreground templates built using extraneous observational input to remove foreground contamination. This is the first demonstration that the CMB angular spectrum can be reliably estimated with precision from a self contained analysis of the WMAP data. The primary product of WMAP are the observations of CMB in 10 independent difference assemblies (DA) distributed over five frequency bands that have uncorrelated noise. Our method utilizes maximum information available within WMAP data by linearly combining DA maps from different frequencies to remove foregrounds and estimating the power spectrum from the 24 cross-power spectra of clean maps that have independent noise. An important merit of the method is that the expected residual power from unresolved point sources is significantly tempered to a constant offset at large multipoles (in contrast to the l2 contribution expected from a Poisson distribution) leading to a small correction at large multipoles. Hence, the power spectrum estimates are less susceptible to uncertainties in the model of point sources.  相似文献   

13.
We present suggestive evidence for an inverse energy cascade within Jupiter’s atmosphere through a calculation of the power spectrum of its kinetic energy and its cloud patterns. Using Cassini observations, we composed full-longitudinal mosaics of Jupiter’s atmosphere at several wavelengths. We also utilized image pairs derived from these observations to generate full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter’s troposphere. We computed power spectra of the image mosaics and kinetic energy maps using spherical harmonic analysis. Power spectra of Jupiter’s cloud patterns imaged at certain wavelengths resemble theoretical spectra of two-dimensional turbulence, with power-law slopes near −5/3 and −3 at low and high wavenumbers, respectively. The slopes of the kinetic energy power spectrum are also near −5/3 at low wavenumbers. At high wavenumbers, however, the spectral slopes are relatively flatter than the theoretical prediction of −3. In addition, the image mosaic and kinetic energy power spectra differ with respect to the location of the transition in slopes. The transition in slope is near planetary wavenumber 70 for the kinetic energy spectra, but is typically above 200 for the image mosaic spectra. Our results also show the importance of calculating spectral slopes from full 2D velocity maps rather than 1D zonal mean velocity profiles, since at large wavenumbers the spectra differ significantly, though at low wavenumbers, the 1D zonal and full 2D kinetic energy spectra are practically indistinguishable. Furthermore, the difference between the image and kinetic energy spectra suggests some caution in the interpretation of power spectrum results solely from image mosaics and its significance for the underlying dynamics. Finally, we also report prominent variations in kinetic energy within the equatorial jet stream that appear to be associated with the 5 μm hotspots. Other eddies are present within the flow collar of the Great Red Spot, suggesting caution when interpreting snapshots of the flow inside these features as representative of a time-averaged state.  相似文献   

14.
The real-space power spectrum of L * galaxies measured from the 2dF Galaxy Redshift Survey (2dFGRS) is presented. Markov chain Monte Carlo (MCMC) sampling was used to fit radial and angular modes resulting from a spherical harmonics decomposition of the 2dFGRS overdensity field (described in a previous paper) with 16 real-space power spectrum values and linear redshift-space distortion parameter  β( L *, 0)  . The recovered marginalized band powers are compared to previous estimates of galaxy power spectra. Additionally, we provide a simple model for the 17-dimensional likelihood hypersurface in order to allow the likelihood to be quickly estimated given a set of model band powers and β( L *, 0). The likelihood surface is not well approximated by a multivariate Gaussian distribution with model-independent covariances. Instead, a model is presented in which the distribution of each band power has a Gaussian distribution in a combination of the band power and its logarithm. The relative contribution of each component was determined by fitting the MCMC output. Using these distributions, we demonstrate how the likelihood of a given cosmological model can be quickly and accurately estimated, and we use a simple set of models to compare estimated likelihoods with likelihoods calculated using the full spherical harmonics procedure. All of the data are made publicly available (from http://www.roe.ac.uk/~wjp/ ), enabling the spherical harmonics decomposition of the 2dFGRS of Percival et al. to be easily used as a cosmological constraint.  相似文献   

15.
It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our model is compatible with the angular spectra of star-light polarization for the Galactic disk. Finally, we discuss how one can estimate polarized microwave emission from dust in the Galactic halo using star-light polarimetry.  相似文献   

16.
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2??C?4?minutes, 4??C?6?minutes, 6??C?15?minutes, and beyond 15?minutes. We detect the presence of long-period oscillations with periods between?15 and 30?minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.  相似文献   

17.
We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 μK(CMB).  相似文献   

18.
We investigate the angular two-point correlation function of temperature in the Wilkinson Microwave Anisotropy Probe ( WMAP) maps. Updating and extending earlier results, we confirm the lack of correlations outside the Galaxy on angular scales greater than about 60° at a level that would occur in 0.025 per cent of realizations of the concordance model. This represents a dramatic increase in significance from the original observations by the Cosmic Background Explorer Differential Microwave Radiometer ( COBE-DMR) and a marked increase in significance from the first-year WMAP maps. Given the rest of the reported angular power spectrum   C   , the lack of large-angle correlations that one infers outside the plane of the Galaxy requires covariance among the   C   up to  ℓ= 5  . Alternately, it requires both the unusually small (5 per cent of realizations) full-sky large-angle correlations and an unusual coincidence of alignment of the Galaxy with the pattern of cosmological fluctuations (less than 2 per cent of those 5 per cent). We argue that unless there is some undiscovered systematic error in their collection or reduction, the data point towards a violation of statistical isotropy. The near-vanishing of the large-angle correlations in the cut-sky maps, together with their disagreement with results inferred from full-sky maps, remains open problems, and are very difficult to understand within the concordance model.  相似文献   

19.
We use data from the Rossi X-ray Timing Explorer to search for harmonics and sidebands of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) in Sco X-1. We do not detect any of these harmonics or sidebands, with 95 per cent confidence upper limits to their power between ∼1 and ∼10 per cent of the power of the upper kHz QPO. The oscillations produced at these frequencies may be attenuated in a scattering corona around the neutron star. We find that upper limits to the unattenuated power of some of the strongest theoretically predicted harmonics and sidebands are as low as ∼2 per cent of the unattenuated power of the high-frequency QPO in Sco X-1.  相似文献   

20.
Dark matter currents in the large-scale structure give rise to gravitomagnetic terms in the metric, which affect the light propagation. Corrections to the weak-lensing power spectrum due to these gravitomagnetic potentials are evaluated by perturbation theory. A connection between gravitomagnetic lensing and the integrated Sachs–Wolfe (iSW) effect is drawn, which can be described by a line-of-sight integration over the divergence of the gravitomagnetic vector potential. This allows the power spectrum of the iSW-effect to be derived within the framework of the same formalism as derived for gravitomagnetic lensing and reduces the iSW-effect to a second-order lensing phenomenon. The three-dimensional power spectra are projected by means of a generalized Limber-equation to yield the angular power spectra. Gravitomagnetic corrections to the weak-lensing spectrum are negligible at currently accessible scales, and cosmic-variance considerations suggest that the detection of the iSW-effect's contribution to the cosmic microwave background angular power spectrum is too small to be detectable at multipoles probed by the Planck satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号