首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tower Hill gold deposit is distinguished from most Archaean lode deposits of the Yilgarn Craton by virtue of its formation early in the regional deformation history and its consequent deformation. The deposit is located in ultramafic schist, adjacent to the contact with a small pluton of biotite monzogranite that intrudes pervasively foliated granodiorite, the dominant component of the Raeside Batholith. Gold, accompanied by local concentrations of bismuth minerals and molybdenite, occurs in a number of quartz vein ‘packages‘. Mineralised quartz veins at Tower Hill lie within an envelope of potassic alteration (talc‐biotite‐chlorite‐pyrite schist), up to several hundred metres wide. They are spatially and temporally associated with the biotite monzogranite and felsic porphyry intrusions, and their deformed equivalents. The deposit lies in a broad zone of ductile deformation (the Sons of Gwalia Shear Zone). Within the altered ultramafic schist, thin units of felsic schist, derived from biotite monzogranite and felsic porphyry, provided sites of contrasting competency that localised quartz vein formation. The mineralised quartz veins were subsequently deformed during alternating periods of shortening and extension, probably related to the syntectonic, solid‐state emplacement of the Raeside Batholith. These deformations pre‐dated strike‐slip movement on the Cemetery Fault, which truncates the ductile fabrics of the Sons of Gwalia Shear Zone, south of Tower Hill. In terms of the regional deformation history, gold mineralisation at Tower Hill formed during early D2 (regional upright folding); subsequent deformation of the orebody pre‐dated D3 (strike‐slip movement on the Cemetery Fault). The nearby Sons of Gwalia and Harbour Lights deposits also probably formed at an early stage, in contrast to most lode gold deposits in the Yilgarn Craton, which formed during or after D3.  相似文献   

2.
Stable isotope analyses of quartz, sulphides, and magnetite were conducted to provide information on thermal history and source of hydrothermal fluids in the Palaeoproterozoic Enåsen gold deposit. Reequilibration and homogenization of oxygen isotopes throughout the rock have apparently not occurred despite the upper amphibolite to granulite facies regional metamorphism that has affected the rocks. However, oxygen isotope geothermometry on a coexisting quartz-magnetite pair gave a minimum temperature for peak metamorphism of around 650 °C which agrees with Fe-Mg geothermometry. This suggests that grain-scale equilibrium is achieved. The variation in oxygen isotope ratios (18O = 7.3 – 10.5) on quartz from the metamorphosed acid sulphate alteration zone is suggested to represent a cooling trend in the fossil hydrothermal system with higher 18O-values in more superficial parts. Temperatures of alteration and silicification and isotopic composition of hydrothermal fluids could not be defined from the present data but it was recognized that the data is compatible with a epithermal genesis for the deposit. It is suggested that alteration, silicification, and mineralization at the Enåsen gold deposit took place in a high sulphidation epithermal environment at temperatures of around 200–250 °C and that the hydrothermal fluids consisted of meteoric and magmatic water. A tentative reconstruction of the fossil hydrothermal system is presented. Sulphur isotope ratios of sulphides from the fold-bearing quartz-sillimanite gneiss gave 34S-values close to zero indicating a magmatic source of the sulphur.  相似文献   

3.
The Shkol’noe deposit is localized in a small granitoid stock, the root portion of which is traced using geophysical data to a depth of 5–8 km. The high-grade gold ore (33 gpt Au) is enriched in silver and principally differs in ore composition from the previously studied mesothermal gold-quartz and epithermal gold-silver deposits in the Russian Northeast. The main reserves of the Shkol’noe deposit concentrate in bonanzas (20% of the total volume of orebodies). The internal deformation is related to the rearrangement of matter in freibergite; exsolution structures in fahlore and native gold are related to postmineral metamorphism. It is suggested that the ore of the Shkol’noe deposit occupies a transitional position between porphyrytype and epithermal levels of ore deposition.  相似文献   

4.
5.
The Tamlalt–Menhouhou gold deposit belongs to the Neoproterozoic–Palaeozoic Tamlalt inlier located in the Eastern High-Atlas (Morocco). It occurs in altered Upper Neoproterozoic bimodal volcanic and volcano-sedimentary units outcropping in the Tamlalt–Menhouhou area. Gold mineralization has been identified in quartz veins related to shear-zones associated with a strong quartz-phyllic-argillic alteration. Visible free gold is related to goethite–malachite–barite boxworks in quartz veins. The other alteration minerals accompanying gold mineralization are mainly carbonates, chlorite, hematite, albite and pyrite whose relative proportion defines three alteration types. 40Ar/39Ar geochronology performed on phengite grains from phyllic alteration and the auriferous quartz veins, yields plateau ages ranging from 300 ± 5 Ma to 284 ± 12 Ma with a weighted mean age of 293 ± 7 Ma. This identifies a Late Variscan age for the Tamlalt–Menhouhou “shear zones-related” gold deposit and emphasizes the consequences of the Variscan orogeny for gold mineralization in the High-Atlas and Anti-Atlas Neoproterozoic inliers.  相似文献   

6.
7.
The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210} {100} to {210} {100} {111} to {100} {111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.  相似文献   

8.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

9.
The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz–sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet–clinopyroxene–K-feldspar–quartz. The quartz–sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite–quartz alteration in the biotite schist, (2) a garnet–clinopyroxene–K-feldspar–quartz alteration in the marble and calc-silicate rock, and (3) a garnet–biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite–quartz– and garnet–clinopyroxene–K-feldspar–quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet–biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid–rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

11.
The Tanami region of northern Australia has emerged over the last two decades as the largest gold-producing region in the Northern Territory. Gold is hosted by epigenetic quartz veins in sedimentary and mafic rocks, and by sulfide-rich replacement zones within iron formation. Although limited, geochronological data suggest that most mineralization occurred at about 1,805–1,790 Ma, during a period of extensive granite intrusion, although structural relationships suggest that some deposits predate this period. There are three main goldfields in the Tanami region: the Dead Bullock Soak goldfield, which hosts the world-class Callie deposit; The Granites goldfield; and the Tanami goldfield. In the Dead Bullock Soak goldfield, deposits are hosted by carbonaceous siltstone and iron formation where a late (D5) structural corridor intersects an early F1 anticlinorium. In The Granites goldfield, deposits are hosted by highly sheared iron formation and are interpreted to predate D5. The Tanami goldfield consists of a large number of small, mostly basalt-hosted deposits that probably formed at a high structural level during D5. The D5 structures that host most deposits formed in a convergent structural regime with σ 1 oriented between E–W and ENE–WSW. Structures active during D5 include NE-trending oblique thrust (dextral) faults and ESE-trending (sinistral) faults that curve into N- to NNW-trending reverse faults localized in supracrustal belts between and around granite complexes. Granite intrusions also locally perturbed the stress field, possibly localizing structures and deposits. Forward modeling and preliminary interpretations of reflection seismic data indicate that all faults extend into the mid-crust. In areas characterized by the N- to NW-trending faults, orebodies also tend to be N- to NW-trending, localized in dilational jogs or in fractured, competent rock units. In areas characterized by ESE-trending faults, the orebodies and veins tend to strike broadly east at an angle consistent with tensional fractures opened during E–W- to ENE–WSW-directed transpression. Many of these deposits are hosted by reactive rock units such as carbonaceous siltstone and iron formation. Ore deposition occurred at depths ranging from 1.5 to 11 km from generally low to moderate salinity carbonic fluids with temperatures from 200 to 430°C, similar to lode–gold fluids elsewhere in the world. These fluids are interpreted as the product of metamorphic dewatering caused by enhanced heat flow, although it is also possible that the fluids were derived from coeval granites. Lead isotope data suggest that lead in the ore fluids had multiple sources. Hydrogen and oxygen isotope data are consistent with both metamorphic and magmatic origins for ore fluids. Gold deposition is interpreted to be caused by fluid unmixing and sulfidation of host rocks. Fluid unmixing is caused by three different processes: (1) CO2 unmixing caused by interaction of ore fluids with carbonaceous siltstone; (2) depressurization caused by pressure cycling in shear zones; and (3) boiling as ore fluids move to shallow levels. Deposits in the Tanami region may illustrate the continuum model of lode–gold deposition suggested by Groves (Mineralium Deposita 28:366–374, 1993) for Archean districts.  相似文献   

12.
Local water contamination by arsenic can be caused by gold mining activities as in Snow Lake, Manitoba. This project was to f'md the source (s) and pathways of the arsenic contamination and describe arsenic attenuation in ground and surface water. The project was initiated because arsenic concentrations average 16.0 mg/L in one groundwater monitoring well (MW17). One potential source of arsenic is the 50 year-old Arsenopyrite Residue Stockpile (ARS), 100 m upgrade of MW17. Between 1948 and 1959, 250000 tons of cyanide treated, arsenopyrite concentrate were stored in a waste rock impoundment, which was left open until 2000 when it was capped with layers of waste rock, clay and silt to minimize water infiltration and the oxidative release of arsenic.  相似文献   

13.
《Applied Geochemistry》2000,15(2):245-263
Since the 80's, studies have shown that Au is mobile in supergene lateritic surficial conditions. They are based either on petrological, thermodynamic studies, or experimental works. In contrast, few studies have been done on the mobility of the Pt group elements (PGE). Moreover, at the present time, no study has addressed the differential mobility of Au, Ag and Pd from natural alloys in the supergene environment. The aim of this study is to understand the supergene behavior, in lateritic conditions, of Au–Ag–Pd alloys of the Au ore locally called Jacutinga at the Maquiné Mine, Iron Quadrangle, Minas Gerais state, Brazil.The field work shows that the host rock is a “Lake Superior type” banded iron formation (BIF) and that the Au mineralization originates from sulfide-barren hydrothermal processes. Primary Ag–Pd-bearing Au has developed as xenomorphous particles between hematite and quartz grains. The petrological study indicates that the most weathered primary Au particles with rounded shapes and pitted surfaces were found, under the duricrust, within the upper friable saprolite. This layer, however is not the most weathered part of the lateritic mantle, but it is where the quartz dissolution resulting porosity is the most developed. The distribution of Au contents in the weathered rocks are controlled by the initial hydrothermal primary pattern. No physical dispersion has been found. Most of the particles are residual and very weakly weathered. This characterizes early stages of Au particle weathering in agreement with the relatively low weathering gradient of the host itabiritic formations that leads essentially to the development of isostructural saprolite lateritic mantle. Limited dissolution of primary Au particles issued from the friable saprolite induces Pd–Ag depleted rims compared to primary Au particle Pd–Ag contents.In addition, limited very short distance in situ dissolution/reprecipitation processes have been found at depth within the primary mineralization, as illustrated by tiny supergene, almost pure, Au particles. The supergene mobility order Pd>Ag>Au as reflecting early weathering stages of Au–Ag–Pd alloys under lateritic conditions is proposed.  相似文献   

14.
The ores of the Yata gold mine in China are rich in arsenic and antimony, so the exploitation of this mine may also lead to the release of As and Sb to adjacent environments, such as stream water, stream sediment, soil, plants, and crops. To understand the environmental impact of mine tailings, samples of water, sediment, soil, plant and crop were collected and analyzed. In summer of 2005, the tailings dump was seriously flushed by a heavy flood, and the mine waste was transported far away. Samples were collected in December of 2004 and January of 2006, respectively, and the impact of the flood on the release of toxic elements was evaluated. The result shows that the Yata creek, which drains the mining area, was severely contaminated by As and Sb. The dissolved As and Sb in water are 86-1140 μg/L and 65-370 μg/L, the particulate As and Sb are 38-2100 μg/L and 25-420 μg/L, whereas As and Sb in the sediment are 190-760 μg/g and 69-210 μg/g, respectively. In water environment, As and Sb show a similar feature to SO4^2- since As and Sb exist dominantly as anions--H2AsO4^-, HAsO4^2- and SbO3^-. In contrast to Fe, Cu, Pb, Zn, which migrate mostly in particulate form, As and Sb tend to transport in dissolved form.  相似文献   

15.
Mineralogy and Petrology - The platiniferous gold–palladium belt of Minas Gerais, Brazil, forms an approximately 240-km-long, roughly north–south-trending domain that includes numerous...  相似文献   

16.
Tourmaline occurs as a minor but important mineral in the alteration zc,ne of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenst~ne belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli golcl deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the natrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). ~['he vein tourmaline, based upon the association of specific carbonate minerals, is further grouped as (i) albite-tourmaline-ankerite-quartz veins (vein-1 tourmaline) and (ii) albite-tourmaline-calcite-quartz veins (vein-2 tourmaline). Both the AMB tourmaline and the vein tourmalines (vein-I and vein-2) belong to the alkali group and are clas- sified under schorl-dravite series. Tourmalines occurring in the veins are zoned while the AMB tour- malines are unzoned. Mineral chemistry and discrimination diagrams 1eveal that cores and rims of the vein tourmalines are distinctly different. Core composition of the ve:n tourmalines is similar to the composition of the AMB tourmaline. The formation of the AMB tourmaline and cores of the vein tour- malines are proposed to be related to the regional D1 deformational event associated with the emplacement of the adjoining ca. 2.61 Ga Chitradurga granite whilst rims of the vein tourmalines vis-a- vis gold mineralization is spatially linked to the juvenile magmatic accretion (2.56-2.50 Ga) east of the studied area in the western part of the eastern Dharwar craton.  相似文献   

17.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

18.
19.
The Qianhe gold deposit in the Xiong’ershan area is located along the southern margin of the Archean-Paleoproterozoic North China Craton. The deposit consists of six orebodies that are hosted in Paleoproterozoic andesites to basaltic andesites and structurally controlled by roughly EW-trending faults. Individual orebodies comprise auriferous quartz veins and disseminated Au-bearing pyrite within hydrothermally altered rocks on both sides of, or close to, the veins. Ore-related hydrothermal alteration has produced various mixtures of K-feldspar, quartz, sericite, chlorite, epidote, carbonate, and sulfides. Pyrite is the most important ore mineral, associated with minor amounts of galena, sphalerite, and chalcopyrite. Other trace minerals include molybdenite, arsenopyrite, scheelite, rutile, xenotime, and parisite. Gold occurs mostly as native gold and electrum enclosed in pyrite or along microfractures of sulfides and quartz. Microthermometric measurements of primary inclusions in auriferous quartz suggest that gold and associated minerals were precipitated in the range of 160–305 °C from aqueous or carbonic-aqueous fluids with salinities of 6–22 wt% NaCl equiv. Samples of molybdenite coexisting with Au-bearing pyrite have Re–Os model ages of 134–135 Ma, whereas ore-related hydrothermal sericite separates yield 40Ar/39Ar plateau ages between 127 and 124 Ma. The Re–Os and 40Ar/39Ar ages are remarkably consistent with zircon U–Pb ages (134.5?±?1.5 and 127.2?±?1.4 Ma; 1σ) of the biotite monzogranite from the Heyu-intrusive complex and granitic dikes in and close to the Qianhe gold mine, indicating a close temporal and thus possibly genetic relationship between gold mineralization and granitic magmatism in the area. Fluid inclusion waters extracted from auriferous quartz have δD values of ?80 to ?72 ‰, whereas the calculated δ 18OH2O values range from 3.1 to 3.8 ‰. The hydrogen and oxygen isotopes from this study and previous work indicate that ore fluids were likely derived from degassing of magmas, with addition of minor amounts of meteoric water. Gold mineralization at Qianhe is temporarily coincident with pervasive bimodal magmatism, widespread fault-basin formation, and well development of metamorphic core complexes in the whole eastern North China Craton that have been interpreted as reflecting reactivation of the craton in the late Mesozoic after prolonged stabilization since its formation in the late Paleoproterozoic. It is therefore concluded that the Qianhe gold deposit formed as a result of this craton reactivation event.  相似文献   

20.
Previous prospectivity modelling for epithermal Au–Ag deposits in the Deseado Massif, southern Argentina, provided regional-scale prospectivity maps that were of limited help in guiding exploration activities within districts or smaller areas, because of their low level of detail. Because several districts in the Deseado Massif still need to be explored, prospectivity maps produced with higher detail would be more helpful for exploration in this region.We mapped prospectivity for low- and intermediate-sulfidation epithermal deposits (LISEDs) in the Deseado Massif at both regional and district scales, producing two different prospectivity models, one at regional scale and the other at district-scale. The models were obtained from two datasets of geological evidence layers by the weights-of-evidence (WofE) method. We used more deposits than in previous studies, and we applied the leave-one-out cross validation (LOOCV) method, which allowed using all deposits for training and validating the models. To ensure statistical robustness, the regional and district-scale models were selected amongst six combinations of geological evidence layers based on results from conditional independence tests.The regional-scale model (1000 m spatial resolution), was generated with readily available data, including a lithological layer with limited detail and accuracy, a clay alteration layer derived from a Landsat 5/7 band ratio, and a map of proximity to regional-scale structures. The district-scale model (100 m spatial resolution) was generated from evidence layers that were more detailed, accurate and diverse than the regional-scale layers. They were also more cumbersome to process and combine to cover large areas. The evidence layers included clay alteration and silica abundance derived from ASTER data, and a map of lineament densities. The use of these evidence layers was restricted to areas of favourable lithologies, which were derived from a geological map of higher detail and accuracy than the one used for the regional-scale prospectivity mapping.The two prospectivity models were compared and their suitability for prediction of the prospectivity in the district-scale area was determined. During the modelling process, the spatial association of the different types of evidence and the mineral deposits were calculated. Based on these results the relative importance of the different evidence layers could be determined. It could be inferred which type of geological evidence could potentially improve the modelling results by additional investigation and better representation.We conclude that prospectivity mapping for LISEDs at regional and district-scales were successfully carried out by using WofE and LOOCV methods. Our regional-scale prospectivity model was better than previous prospectivity models of the Deseado Massif. Our district-scale prospectivity model showed to be more effective, reliable and useful than the regional-scale model for mapping at district level. This resulted from the use of higher resolution evidential layers, higher detail and accuracy of the geological maps, and the application of ASTER data instead of Landsat ETM + data. District-scale prospectivity mapping could be further improved by: a) a more accurate determination of the age of mineralization relative to that of lithological units in the districts; b) more accurate and detailed mapping of the favourable units than what is currently available; c) a better understanding of the relationships between LISEDs and the geological evidence used in this research, in particular the relationship with hydrothermal clay alteration, and the method of detection of the clay minerals; and d) inclusion of other data layers, such as geochemistry and geophysics, that have not been used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号