共查询到2条相似文献,搜索用时 0 毫秒
1.
A first-order leveling survey across the northeast part of the Yellowstone caldera in September 1998 showed that the central
caldera floor near Le Hardy Rapids rose 24±5 mm relative to the caldera rim at Lake Butte since the previous survey in September
1995. Annual surveys along the same traverse from 1985 to 1995 tracked progressive subsidence near Le Hardy Rapids at an average
rate of –19±1 mm/year. Earlier, less frequent surveys measured net uplift in the same area during 1923–1976 (14±1 mm/year)
and 1976–1984 (22±1 mm/year). The resumption of uplift following a decade of subsidence was first detected by satellite synthetic
aperture radar interferometry, which revealed approximately 15 mm of uplift in the vicinity of Le Hardy Rapids from July 1995
to June 1997. Radar interferograms show that the center of subsidence shifted from the Sour Creek resurgent dome in the northeast
part of the caldera during August 1992 to June 1993 to the Mallard Lake resurgent dome in the southwest part during June 1993
to August 1995. Uplift began at the Sour Creek dome during August 1995 to September 1996 and spread to the Mallard Lake dome
by June 1997. The rapidity of these changes and the spatial pattern of surface deformation suggest that ground movements are
caused at least in part by accumulation and migration of fluids in two sill-like bodies at 5–10 km depth, near the interface
between Yellowstone's magmatic and deep hydrothermal systems.
Received: 30 November 1998 / Accepted: 16 April 1999 相似文献
2.
A 3D magnetic inversion method using a conjugate gradient method (CG method) was developed for constructing 3D magnetization models of a volcanic edifice and applied to aeromagnetic anomalies of Izu-Oshima Volcano surveyed in 1986 and in 1997. The calculated results of the 1986 data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 A/m. The derived 3D magnetic structure shows low magnetization zones beneath the west-northwest of the western caldera rim, beneath the west-southwest of Mt. Mihara and beneath Mt. Shiroishi. These features may be related with demagnetizations, reflecting a high thermal state due to magma activities in the 1986 eruption. The comparison between 3D magnetization models in 1986 and in 1997, indicates meaningful changes beneath the C-craters erupted in 1986, suggesting a recovery process of demagnetizations and a considerable decrease of magnetization intensities in the foot of Mt. Futago, indicative of demagnetizations. A derived magnetization model including Izu-Oshima Volcano and its surrounding sea areas clarifies the submerged volcanic edifices around Izu-Oshima Island, and suggests that the old volcanic edifices of Fudeshima, Gyojyanoiwaya, and Okata Volcanoes have been affected by eastward migrations due to massive intrusions of a dike-like structure inferred at the base of Izu-Oshima Volcano. 相似文献