共查询到20条相似文献,搜索用时 0 毫秒
1.
We present data on the phase relationships of mixtures between natural tonalite and peridotite compositions with excess H2O at 30 kbar, and on the composition of the piercing point where the peridotite-tonalite mixing line intersects the L(Ga,Opx) reaction boundary. These data, in conjunction with earlier analogous data along peridotite-granite and basalt-granite mixing lines, permit construction of a pseudoternary liquidus projection that is relevant to interaction of peridotite with slab-derived magmas. Knowledge of the liquidus phase and temperature for a range of compositions within this projection enables us to map primary crystallization fields for quartz, garnet, orthopyroxene, clinopyroxene, and olivine, and to estimate the distribution of isotherms across the projection. Using this projection, we explore the consequences of peridotite assimilation by mafic to intermediate (basalt to dacite) hydrous slab-derived melts. Progressive assimilation under isothermal conditions results in garnet precipitation as the melt composition traverses the garnet liquidus surface and then garnet+orthopyroxene crystallization once the melt reaches the L(Ga,Opx) field boundary. The melt is constrained to remain on this field boundary and further assimilation of peridotite simply results in continued precipitation of garnet+orthopyroxene until the melt is consumed. The product is a hybrid solid assemblage consisting of Ga+ Opx. It is noteworthy that this process drives the melt composition in a direction nearly perpendicular to the mixing line between peridotite and the initial melt. If assimilation occurs with increasing temperature (as might occur if a slab-derived magma rises into the hotter mantle wedge), intermediate magmas (e.g. andesites) will again precipitate garnet until they reach the L(Ga,Opx) reaction boundary at which point Ga re-dissolves and orthopyroxene precipitates as the melt composition moves up-temperature along this boundary. The product of this process is a hybrid solid assemblage with garnet subordinate to orthopyroxene. For more mafic initial compositions (e.g. basalts) originally plotting in the Cpx field, it appears possible to avoid field boundaries involving garnet and shift in composition more directly toward peridotite, if assimilation is accompanied by a sharp increase in temperature. Considering published REE evidence (arguing against garnet playing a significant role in the genesis of many subduction-related magmas) in light of our results, it appears unlikely that peridotite assimilation by intermediate magmas under conditions of constant or increasing temperature is an important process in subduction zones. However, if assimilation is accompanied by an increase in temperature, our data do permit the derivation of high-Mg basalts from less refractory precursors (e.g. high-Al basalts) by peridotite assimilation. 相似文献
2.
Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism 总被引:6,自引:3,他引:6
Phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO. Experimental liquids are low-MgO high-alumina basalt or basaltic andesite, and most are saturated with olivine, calcic plagioclase, and either high-calcium pyroxene or hornblende (±magnetite). Cr-spinel or magnetite appear near the liquidus of wet high-alumina basalts because H2O lowers the appearance temperature of crystalline silicates but has a lesser effect on spinel. As a consequence, experimental liquids follow calcalkaline differentiation trends. Hornblende stability is sensitive to the Na2O content of the bulk composition as well as to H2O content, with the result that hornblende can form as a near liquidus mineral in wet sodic basalts, but does not appear until liquids reach andesitic compositions in moderate Na2O basalts. Therefore, the absence of hornblende in basalts with low-to-moderate Na2O contents is not evidence that those basalts are nearly dry. Very calcic plagioclase (>An90) forms from basaltic melts with high H2O contents but cannot form from dry melts with normal are Na2O and CaO abundances. The presence of anorthite-rich plagioclase in high-alumina basalts indicates high magmatic H2O contents. In sum, moderate pressure H2O-saturated phase relations show that magmatic H2O leads to the early crystallization of spinel, produces calcic plagioclase, and reduces the total proportion of plagioclase in the crystallizing assemblage, thereby promoting the development of the calc-alkaline differentiation trend. 相似文献
3.
The formation of mantle phlogopite in subduction zone hybridization 总被引:19,自引:3,他引:19
Extrapolation and extension of phase equilibria in the model system KAlSiO4-Mg2SiO4-SiO2-H2O suggests that at depths greater than 100 km (deeper than amphibole stability), hybridism between cool hydrous siliceous magma, rising from subducted oceanic crust, and the hotter overlying mantle peridotite produces a series of discrete masses composed largely of phlogopite, orthopyroxene, and clinopyroxene (enriched in Jadeite). Quartz (or coesite) may occur with phlogopite in the lowest part of the masses. The heterogeneous layer thus produced above the subducted oceanic crust provides: (1) aqueous fluids expelled during hybridization and solidification, which rise to generate in overlying mantle (given suitable thermal structure) H2O-undersaturated basic magma, which is the parent of the calc-alkalic rock series erupted at the volcanic front; (2) masses of phlogopite-pyroxenites which melt when they cross a deeper, high-temperature solidus, yielding the parents of alkalic magmas erupted behind the volcanic front; and (3) blocks of phlogopite-pyroxenites which may rise diapirically for long-term residence in continental lithosphere, and later contribute to the potassium (and geochemically-related elements) involved in some of the continental magmatism with geochemistry ascribed to mantle metasomatism. 相似文献
4.
Biswajit Mukhopadhyay 《Contributions to Mineralogy and Petrology》1991,106(2):253-264
Liquidus phase relationships in the CaAlAl–SiO6–Mg2SiO4–CaMgSi2O6–CaAlSi2O8 portion of the simplified basalt tetrahedron in the CaO–MgO–SiO2–Al2O3 system have been experimentally determined at 20 kbar pressure. The fo+di
ss+sp+li univariant curve, that pierces the fo-di-an join and meets the fo+di
ss+ enss+sp+li invariant point in the basalt tetrahedron, extends all the way to and pierces the di-fo-CaTs join, the limit of the simplified basalt tetrahedron toward the silica undersaturated portion.An algebraic method, relying on compositions of two successive liquids on a univariant curve and those of the crystalline phases in equilibrium with the respective liquids, is developed to identify the type of reaction that takes place along an isobarically univariant curve and to detect whether there is a temperature maximum on that curve. Use of this method for the di
ss+fo+sp+li univariant equilibria shows that a temperature maximum exists on this curve at the composition Fo11Di56An3CaTs30, very close to and slighthly to the SiO2-rich side of the fo-di-CaTs join. The temperature along the univariant curve continuously decreases from the temperature maximum (1500°C) to the invariant point (1475°C) where the univariant curve is terminated by the appearance of e
ss as a member of the equilibrium assemblage. Along this part of the curve, a reaction relationship occurs according to the equation fo+li=di
ss+ sp. Compositions of di
ss in equilibrium with the liquids from the temperature maximum to the fo+di
ss+enss+ sp+li invariant point range from Di66En9CaTs25 to Di36En40CaTs24. Because of the reaction relationship of forsterite with liquid, fractional crystallization of a model alkalic basaltic liquid would cause liquids to move off the fo-di
ss-sp-li univariant curve onto the sp-di
ss divariant surface. Crystallization of di
ss and sp would then lead to silica enrichment of residual liquids. Thus at pressures below 30 kbar, at which pressure the Al2O3–CaSiO3–MgSiO3 plane becomes a new thermal divide cutting through both the tholeiitic and alkalic volumes, alkalic liquids will fractionate toward tholeiitic compositions without crossing a thermal divide. This relationship would be expected to persist at pressures down to about 4 kbar where a maximum on the fo-di-an-li boundary line causes a thermal divide near the fo-di-an plane. Strongly SiO2-undersaturated liquids (e.g. nephelinites, basanites), on the other hand, cannot be derived from SiO2-undersaturated basalts (e.g. alkali olivine basalt) by fractional crystallization at 20 kbar. We also found that no gt primary phase volume cuts the wo-en-Al2O3 join at 20 kbar pressure. The wehrlite, the olivine clinopyroxenite, and the Al-augite group lherzolite xenoliths, containing highly aluminous clinopyroxenes (enriched in Ca-Tschermak), can be interpreted as crystal cumulates from alkalic basalts in the light of this experimental study. This is consistent with the mode of origin of these xenoliths proposed from petrographic, mineralogic, and geochemical studies.Abbreviations and notations
di
CaMgSi2O6
-
fo
Mg2SiO4
-
an
CaAl2Si2O8
-
CaTs
CaAlAlSiO6
-
sp
MgAl2O4
-
en
MgSiO3
-
wo
CaSiO3
-
gt
Ca3Al2Si3O12–Mg3Al2Si3O12
-
qz
SiO2
-
li
Liquid
-
gl
glass
-
ss
Solid Solution
- A
An mxn matrix
- X
A column vector
- kbar
kilobar 相似文献
5.
6.
Mixtures of synthetic crystalline enstatite and diopside were reacted with small water contents in sealed capsules in piston-cylinder apparatus at 30 kb between 1000° C and 1700° C. The compositions of coexisting enstatite and diopside solid solutions were measured with an ARL-EMX electron microprobe between 1000° C and 1500° C. Between 1100° C and 1500° C the pyroxenes coexisted with H2O-undersaturated liquid which quenched to inhomogeneous pyroxene crystals. The presence of liquid facilitated growth of pyroxene crystals suitable for microprobe determinations. The solvus of Davis and Boyd (1966) is generally used in geothermometry; our enstatite solvus limb is a few mol-% richer in Mg2Si2O6 in the temperature range 1000–1400° C; our diopside solvus limb is a few mol-% richer in Mg2Si2O6 below 1100°C, in close agreement between 1100° C and 1200° C, but richer in CaMgSi2O6 between 1200° C and 1500° C. Estimated equilibration temperatures for a diopside with composition 78.7% Di is 1300° C according to our results compared with 1210° C for the Davis and Boyd solvus. 相似文献
7.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。 相似文献
8.
Metamorphic and magmatic rocks are present in the northwestern part of the Schwaner Mountains of West Kalimantan. This area was previously assigned to SW Borneo (SWB) and interpreted as an Australian-origin block. Predominantly Cretaceous U-Pb zircon ages (c. 80–130 Ma) have been obtained from metapelites and I-type granitoids in the North Schwaner Zone of the SWB but a Triassic metatonalite discovered in West Kalimantan near Pontianak is inconsistent with a SWB origin. The distribution and significance of Triassic rocks was not known so the few exposures in the Pontianak area were sampled and geochemical analyses and zircon U-Pb ages were obtained from two meta-igneous rocks and three granitoids and diorites. Triassic and Jurassic magmatic and metamorphic zircons obtained from the meta-igneous rocks are interpreted to have formed at the Mesozoic Paleo-Pacific margin where there was subduction beneath the Indochina–East Malaya block. Geochemically similar rocks of Triassic age exposed in the Embuoi Complex to the north and the Jagoi Granodiorite in West Sarawak are suggested to have formed part of the southeastern margin of Triassic Sundaland. One granitoid (118.6 ± 1.1 Ma) has an S-type character and contains inherited Carboniferous, Triassic and Jurassic zircons which indicate that it intruded Sundaland basement. Two I-type granitoids and diorites yielded latest Early and Late Cretaceous weighted mean ages of 101.5 ± 0.6 and 81.1 ± 1.1 Ma. All three magmatic rocks are in close proximity to the meta-igneous rocks and are interpreted to record Cretaceous magmatism at the Paleo-Pacific subduction margin. Cretaceous zircons of metamorphic origin indicate recrystallisation at c. 90 Ma possibly related to the collision of the Argo block with Sundaland. Subduction ceased at that time, followed by post-collisional magmatism in the Pueh (77.2 ± 0.8 Ma) and Gading Intrusions (79.7 ± 1.0 Ma) of West Sarawak. 相似文献
9.
D. Perkins III T. J. B. Holland R. C. Newton 《Contributions to Mineralogy and Petrology》1981,78(1):99-109
Forty-six reversed determinations of the Al2O3content of enstatite in equilibrium with garnet were made in the P/T range 15–40 kbar/900–1,600° C in the MgO-Al2O3-SiO2 system. Starting materials were mixtures of synthetic pyrope+Al-free enstatite and pyrope+enstatite (5–12% Al2O3). Al2O3 contents in reversal run pairs closely approached common values from both the high- and low-Al sides. Most experiments were done in a piston-cylinder device using a NaCl medium; some runs at very high temperatures were made in pyrex/NaCl or pyrex/talc assemblies. The measured enstatite compositions, expressed as mole fractions of Mg2(MgAl)(AlSi3)O12(X Opy En ) were fitted by a Monte-Carlo method to the equilibrium condition: $$\begin{gathered} \Delta H_{970}^0 - 970\Delta S_{970}^0 \hfill \\ + \mathop \smallint \limits_1^P \Delta V_{970}^0 dP - \mathop \smallint \limits_{970}^T \Delta S_T^0 dT + RT\ln X_{Opy}^{En} = 0 \hfill \\ \end{gathered}$$ where the best fit parameters of ΔH, ΔS and ΔV (1 bar, 970 K) for the reaction pyrope=opy are 2,040 cal/mol, 2.12 eu and 9.55 cc/mol. In addition to the determination of Al2O3 contents of enstatite, the univariant reaction pyrope+forsterite=enstatite+spinel was reversibly located in the range 1,100–1,400°C. A “best-fit” line passes through 22, 22.5 and 25 kbar at 1,040, 1,255 and 1,415°C, respectively. Our results for the univariant reaction are in agreement with previous studies of MacGregor (1974) and Haselton (1979). However, comparison of the experimentally determined curve with thermochemical calculations suggests that there may be a small error in the tabulated ΔH f(970,1) 0 value for enstatite. A value of?8.32 rather than?8.81 kcal/mole (Charlu et al. 1975) is consistent with the present data. Application of garnet-enstatite-spinel-forsterite equilibria to natural materials is fraught with difficulties. The effects of nonternary components are poorly understood, and the low solubilities of Al2O3 in enstatite under most geologically reasonable conditions make barometric or thermometric calculations highly sensitive. More detailed studies, including reversed determinations in low-friction assemblies, are sorely needed before the effects of important diluents such as Fe, Ca and Cr can be fully understood. 相似文献
10.
Liquidus phase relationships determined on the join CaAl2Si2O8 (anorthite)-Mg2SiO4 (forsterite)-SiO2 (quartz) at 10 kbar show that increasing pressure causes the forsterite and anorthite primary phase fields to shrink and the spinel, enstatite and silica fields to expand. The boundary line between the enstatite and forsterite fields and that between the enstatite and quartz fields both move away from the SiO2 apex as pressure increases. Therefore, simplified source peridotite would yield simplified basaltic partial melts with decreasing silica as pressure increases, as has been found in other studies. Also, increasing pressure decreases the amount of silica enrichment in residual liquids produced by fractional crystallization. Although anorthite is unstable in simplified peridotite above 9 kbar in the system CaO-MgO-Al2O3-SiO2, it is an important phase in the fractional crystallization of simplified basalts at 10 kbar and probably also in natural basalts.Contribution no. 419, Department of Geosciences, University of Texas at Dallas 相似文献
11.
Summary Phase fields intersected by three joins in the System CaO-MgO-SiO2-CO2-H2O at 2 kbar were investigated experimentally to determine the melting relationships and the sequences of crystallization of liquids co-precipitating silicate minerals and carbonates. These joins connect SiO2 to three mixtures of CaCO3-MgCO3-Mg(OH)2 with compositions on the primary îield for calcite, between the composition CaCO3 and the low-temperature (650°C eutectic liquid co-precipitating calcite, dolomite and periclase. In the pseudo-quaternary tetrahedron calcite-magnesite-brucite-diopside, two of the significant reactions found are: (1) a eutectic at 650°C, calcite + dolomite + periclase + forsterite + vapor = liquid, and (2) a peritectic at 1038°Cwhich is either calcite + åkermanite + forsterite + vapor = monticellite + liquid calcite + monticellite + forsterite + vapor = åkermanite + liquid. The eutectic liquid has high MgO/CaO and CO2/H2O and only 2–3% SiO2 (estimated 15–20% MgCO3, 35–40% CaCO3, 40–45% Mg(OH)2, and 5–6% Mg2SiO4). The composition joins intersect a thermal maximum for åkermanite + forsterite + vapor = liquid, which separates high-temperature liquids precipitating silicates together with a little calcite, from low-temperature liquids precipitating carbonates with a few percent of forsterite; there is no direct path between the silicate and synthetic carbonatite liquids on these joins, but it is possible that fractionating liquid paths diverging from the joins may connect them. More complex relationships involving the pprecipitatioon off monticellite and åkermanite are also outlined. Magnetite-magnesioferrite may replace periclase in natural magmatic systems. The results indicate that the assemblage calcite-dolomite-magnetite-forsterite represents the closing stages of crystallization of carbonatites, whereas assemblages such as calcite-magnetite-forsterite and dolomite-magnetite-forsterite span the whole range of carbonatite evolution in terms of temperature and composition, and provide the link between liquids precipitating silicates and those precipitating carbonates.
With 8 Figures 相似文献
Die Beziehungen zwischen silikarischen Schmelzen und karbonatbildenden Schmelzen im System CaO-MgO-SiO2-CO2-H2O bei 2 kbar
Zusammenfassung Phasenfelder, die durch den Schnitt von drei Verbindungslinien im System CaO-MgO-SiO2-CO2-H2Odefiniert werden, wurden experimentell bei 2 kbar untersucht, um die Schmelzbeziehungen und die Kristallisationsfolge von Schmelzen, die gleichzeitig silikatische und karbonatische Minerale ausscheiden, zu bestimmen. Diese Linien verbinden SiO2 mit drei Mischungen von CaCO3-M9CO3-Mg(OH)2 mit Zusammensetzungen im primären Calcitfeld, zwischen der Zusammensetzung CaCO3 und der tieftemperierten (650°C Calcit-, Dolomit- und Periklasbildenden eutektischen Schmelze. Zwei wichtige im ppseudo-quaternären Tetraeder Calcit-Magnetit-Brucit-Diopsid gefundene Reaktionen sind: (1) Ein Eutektikum bei 650°C Calcit + Dolomit + Periklas + Forsterit + Vapor = Liquid und (2) ein Peritektikum bei 1038°C mit entweder Calcit + Åkermanit + Forsterit + Vapor = Monticellit + Liquid oder Calcit + Monticellit + Forsterit + Vapo = Åkermanit + Liquid Die eutektische Schmelze zeigt hohe MgO/CaO und CCO2H2O Verhältnisse und nur 2–3% SiO2(geschätzter Anteil an MgCO315–20%, CaCO3 35–40%, Mg(OH)2 40–50% und Mg2SiO4 5–6%). Die Verbindungslinie schneidet ein thermisches Maximum von Åkermanit + Forsterit + Vapor = Liquid, das höher temperierte Schmelzen, die Silikate gemeinsam mit etwas Clacit ausscheiden, von tiefer temperierten Schmelzen trennt, aus denen sich Karbonate gemeinsam mit wenigen Prozenten Forsterit abscheiden. Es existiert keine direkte Verbindung zwischen silikatischen und synthetischen karbonatitischen Schmelzen entlang dieser Verbindungslinien, es wäre aber möglich, daß Fraktionierungspfade, die von diesen Verbindungslinien ausgehen, sie verbinden. Komplexere Beziehungen, die die Kristallisation von Monticellit und Åkermanit beinhalten, werden ebenfalls aufgezeigt. Magnetit-Magnesioferrit könntean die Stelle von Periklas in nnatürlichenmagmatischen Systemen treten. Die Ergebnisse weisen darauf bin, daß die Vergesellschaftung Calcit-Dolomit-Magnetit-Forsterit das Endstadium der Karbonatitkristallisation repräsentiert, während die Vergesellsschaftungen von Calcit-Magnetit-Forsterit bzw. Dolomit-Magnetit-Forsterit die gesamte Spannweite der Karbonatitevolution hinsichtlich Temperatur und Zusammensetzung umfassen und demnach ein Verbindungsglied zwischen silikat- und karbonatausscheidenden Schmelzen darstellen.
With 8 Figures 相似文献
12.
Marian B. Holness 《Contributions to Mineralogy and Petrology》1995,118(4):356-364
An investigation was made of the effect of trace amounts of feldspar (Na and/or K) on dihedral angles in the quartz-H2O-CO2 system at 4 kbar and 450–1050°C. Quartz-quartz-H2O dihedral angles in feldspar-bearing quartz aggregates are observed to be the same as those in pure quartz aggregates at
temperatures below 500°C. Above this temperature, they decrease with increasing temperature until the solidus. The final angle
at the inception of melting is about 65° for microcline-quartz-H2O and microcline-albite-quartz-H2O, and much less than 60° (the critical value for formation of grain-edge fluid channels in an isotropic system) for the albite-quartz-H2O system. CO2 was observed to produce a constant quartz-quartz-fluid dihedral angle of 97° in feldspar-bearing quartz aggregates at all
temperatures studied. Also examined were the dihedral angles for the two co-existing supersolidus fluids in quartz aggregates.
In all systems the quartz-volatile fluid angle is greater than 60°, whereas the quartz-melt angle is lower than 60°. Both
super-solidus angles decrease with increasing temperature. The transition from nonconnected to connected poro- sity with increasing
temperature observed in the quartz-albite-H2O system some tens of degrees below the solidus (termed a permeability transition), if a common feature of rocks near their
melting points, will play an important role in controlling the permeability of high-grade rocks to aqueous fluids.
Received: 27 October 1993 / Accepted: 11 July 1994 相似文献
13.
N. I. Bezmen V. A. Zharikov M. B. Epelbaum V. O. Zavelsky Y. P. Dikov N. I. Suk S. K. Koshemchuk 《Contributions to Mineralogy and Petrology》1991,109(1):89-97
The H2O and H2 solubilities in an albite melt at 1200° C and 2 kbar over the entire range of gas phase composition, from pure hydrogen to pure water were studied in gas-media pressure vessels. The water solubility initially increases with increasing hydrogen content until a maximum of 9.19 wt% H2O atXH
2
v
=0.1 is reached, withXH
2
v
>0.1 the water solubility decreases. The hydrogen solubility curve has a maximum atXH
2
v
=0.42 where the concentration reaches 0.206 wt% H2O. Over the entire compositional range1H NMR (nuclear magnetic resonance) spectra show distinct absorption lines due to protons bound to OH groups and to isolated firmly bound water molecules. In NMR and Raman spectra there were no bands attributable to the H–H vibrations of molecular hydrogen. The X-ray photo-electronic spectra of hydrogen-bearing glasses show the Si2p (99 eV) band which corresponds to the zero-valency silicon. The formation of OH groups and molecular water during interaction between hydrogen-bearing fluids and melts under reducing conditions has a qualitative effect, the same as for water dissolution. Another point of interest is that hydrogen-bearing melts undergo more depolymerization than do hydrous melts. 相似文献
14.
Single-crystal Raman and infrared reflectivity data including high pressure results to over 200 kbar on a natural, probably fully ordered MgAl2O4 spinel reveal that many of the reported frequencies from spectra of synthetic spinels are affected by disorder at the cation sites. The spectra are interpreted in terms of factor group analysis and show that the high energy modes are due to the octahedral internal modes, in contrast to the behavior of silicate spinels, but in agreement with previous data based on isotopic and chemical cation substitutions and with new Raman data on gahnite (~ ZnAl2O4) and new IR reflectivity data on both gahnite and hercynite (~Fe0.58Mg0.42Al2O4). Therefore, aluminate spinels are inappropriate as elastic or thermodynamic analogs for silicate spinels. Fluorescence sideband spectra yield complementary information on the vibrational modes and provide valuable information on the acoustic modes at high pressure. The transverse acoustic modes are nearly pressure independent, which is similar to the behavior of the shear modes previously measured by ultrasonic techniques. The pressure derivative of all acoustic modes become negative above 110 kbar, indicating a lattice instability, in agreement with previous predictions. This lattice instability lies at approximately the same pressure as the disproportionation of spinel to MgO and Al2O3 reported in high temperature, high pressure work. 相似文献
15.
16.
Liquidus phase relationships determined on the join anorthite-forsterite-quartz at 20 kbar show primary phase fields for quartz (q), forsterite (fo), enstatite (en), spinel (sp), anorthite (an), sapphirine (sa), and corundum (cor). Increasing pressure causes (1) thefo andan primary phase fields to contract, (2) theen, q, andcor fields to expand, (3) thefo-en boundary line to move away from the Q apex, (4) theen-q boundary line to move also away from the Q apex but by a smaller amount, and (5) a primary phase field forsa to appear at a pressure between 10 and 20 kbar. Seven liquidus piercing points at 20 kbar have been located as follows:
Crystalline phases 相似文献
17.
Phase equilibrium data have been collected for isobaricallyunivariant melting of simplified Iherzolite compositions inthe system CaO-MgO-Al2O3 SiO2-Na2O over a pressure range of735 kbar. These data permit the melting behavior of awide variety of model lherzolite compositions to be determinedquantitatively by algebraic methods. Two P-T univariant meltingreactions, corresponding to plagioclase to spinel lherzoliteand spinel to garnet lherzolite, are identified as peritectic-typetransitions and have positive Clapeyron slopes. The univariantcurves move to higher pressures and temperatures with increasingNa2O in the liquid. The effect of the univariant curves on meltingis to produce low-temperature regions and isobarically invariantmelting intervals along lherzolite solidi. In the plagioclaselherzolite stability field, melting of four-phase model lherzoliteis pseudo-invariant, occurring over small temperature intervals(5C) and producing liquids that are quartz tholeiites at <8kbar and olivine tholeiites at >8 kbar. Calculated equilibriumconstants for plagioclase-liquid equilibria show both temperatureand pressure dependence. Plagioclase with anorthite content(AN) >90 mol%, as observed in some oceanic basalts, can crystallizefrom liquids with <1% Na2O. Melting of spinel lherzoliteis not pseudo-invariant but occurs over large temperature intervals(1560 C), producing a wide range in liquid compositions,from alkali basalts and alkali picrites at low to moderate degreesof melting (<110%) to olivine tholeiites and picritesat higher degrees of melting (>10%). On the basis of limiteddata in the garnet Iherzolite field, melts from garnet lherzoliteare more silica rich for a given degree of melting than meltsfrom spinel lherzolite, and liquid compositions trend towardenstatite with increase in pressure. Source fertility (especiallyNa2O content) has a strong control on the temperature of meltingand liquid composition. Less fertile sources produce smalleramounts of liquids richer in normative silica. For certain bulkcompositions (high SiO2 and low Al2O3), spinel is not a stablephase along the lherzolite solidus. 相似文献
18.
David M. Harris Alfred T. Anderson Jr. 《Contributions to Mineralogy and Petrology》1984,87(2):120-128
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of
silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite,
and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the
inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71)
with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass
inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon
dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility
model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300
to 850 bars, respectively, during pre-eruption crystallization. 相似文献
19.
Experiments designed to simulate the interaction of juxtaposed rhyolitic and basic magmas were conducted at 10 kbar with H2O, using reaction-couples consisting of Westerly granite (WG) against basalt (DW-1) and WG against a synthetic mafic glass (SMG, enriched in MgO and Na2O relative to DW-1). Each couple was run with 5 and 10 wt% H2O corresponding respectively to H2O-undersaturated and H2O-oversaturated conditions. Experiments were run for 42–44 h at 920° C, above the liquidus of WG and within the melting intervals of DW-1 and SMG. WG was run above the basic material in all but one experiment. The composition of the granitic melt was altered only through material exchange with the adjacent basic melts, whereas that of the basic melts also changed (relative to the bulk basic composition) due to partial crystallization. Some crystallization also occurred within the zone of interaction. For control, the basic compositions were also run alone under the same conditions as the reaction-couple experiments. The crystalline phase assemblages in the basic ends of the coupled experiments differed from those produced from the basic materials alone, demonstrating interaction with the granite melt. Moreover, compositional gradients within the basic ends of coupled experiments are indicated by changes in phase assemblage and compositions with distance from the interface with WG. Microprobe analyses of glass collected along the length of the capsules confirm published observations that alkali diffusion is very fast: K2O and Na2O homogenized throughout the capsules in less than the two-day run times. This, coupled with the fact that introduction of K2O into SMG stabilized biotite, produced the result that after interaction the bulk basic material (melt+crystals) contained more K2O than the coexisting felsic melt. Only very gentle gradients for CaO, FeO, and MgO are preserved in our experiments, in contrast with published anhydrous results, suggesting that the difference in activity coefficients for these components between basic and felsic melts is reduced by the introduction of H2O. Gradients for SiO2 and Al2O3 are of comparable length to those of the divalent cations, confirming earlier results that the diffusivities of the network-formers limit the rate of diffusion of Ca, Fe, and Mg. 相似文献
20.
Carbon isotopic fractionation between CO2 vapour,silicate and carbonate melts: an experimental study to 30 kbar 总被引:5,自引:0,他引:5
David P. Mattey W. R. Taylor D. H. Green C. T. Pillinger 《Contributions to Mineralogy and Petrology》1990,104(4):492-505
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars. 相似文献
|
---|