首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

2.
A statistical technique, based on the concept of a 1D energy density spectrum of the observed gravity field, has been used to compute ensemble average depths to various horizons containing causative sources of random geometric shape, size, density, etc. The plot of the logarithm of the energy of the observed Bouguer anomaly versus the angular frequency can be approximated, over a certain frequency band, by a linear segment whose slope is related to an average ensemble depth around which a random distribution of numerous anomalous sources exists. Suitable matched filters, based on the computed values of intercepts and slopes of several linear segments approximating the spectrum, have been used to deconvolve the gravity effects associated with the causative sources, occurring around their respective mean depths. The individual deconvolved gravity effects thus separated out have been modelled using the sin x/x method by assuming a fluctuating interface between two formations. The applicability of the present method has been assessed using two observed Bouguer anomaly profiles: one from Ujjain to Mahan, and the other from Jhansi to Mandla where Deep Seismic Sounding (DSS) results are available. The proposed geological crustal models along these two profiles exhibit reasonably good agreement with those obtained from DSS results. A geologically plausible model of the crust in a virgin region has been presented along a Bouguer anomaly profile from Jaipur to Raipur. The following main conclusions have been drawn from the present analysis: (1) The depths to the Moho and Archaean basement interfaces fluctuate between 33.2 and 36.8 km and between 4.6 and 7.0 km respectively. (2) The Narmada-Son Lineament (NSL) does not coincide exactly with the Moho upwarp beneath it. However, this offset is greater in the eastern part of the NSL rather than in the western part. (3) The development of the Satpura horst structure is due to a rise in the Moho interface in a compressional regime. (4) The intrabasement feature (depth from 5 to 12 km) represents a hybrid massif possibly formed due to an admixture of sialic and simatic crust under a tensional regime in the Ujjain-Mahan section.  相似文献   

3.
The amplitude of the horizontal magnetic field in the ground between two parallel wires, both carrying an alternating current in the same direction, is likely to have a saddle point if the separation between the wires is small and the frequency is low. The amplitude has a maximum in the vertical direction and a minimum in the horizontal. Rectangular geological structures in the ground which are centered between the wires have a varying effect on the magnetic fields at the surface. In general, the vertical magnetic field “crosses over” at the center of the structure. A shallow and flat lying conductor displays a broad flat type of profile when the horizontal magnetic field between the wires is measured. Changing the structure to a narrower but more conducting one at depth will provide a more pointed but still broad profile. The phase of the horizontal field is also increased. When the structure is a thin vertical dyke, the amplitude of the horizontal magnetic field anomaly due to the dyke rapidly decreases as the depth of the dyke is increased. The phase of the horizontal field is less sensitive to changes in depth of the dyke but is more sensitive to the conductivity ratio of the dyke and the half-space. The amplitude of the vertical magnetic field anomaly due to the dyke is only slightly influenced by conductivity contrast or the depth of the dyke. The phase of the vertical magnetic field, however, is strongly influenced by the conductivity contrast, particularly if the conductivity frequency product is greater than hundred. In essence, the field behaves like that of the conventional vertical loop source, but the fields are uniform over much larger areas. This suggests the possibility of using dip angle measurements for rapid reconnaissance.  相似文献   

4.
Free oscillation and body wave data are used to construct average Q models for the earth. The data set includes fundamental and overtone observations of the radial, spheroidal and toroidal modes, ScS observations and amplitudes of body waves as a function of distance. The preferred model includes a low-Q zone at both the top and the bottom of the mantle. In these regions the seismic velocities are likely to be frequency dependent in the “seismic” band. Absorption in the mantle is predominantly due to losses in shear. Compressional absorption may be important in the inner core.A grain-boundary relaxation model is proposed that explains the dominance of shear over compressional dissipation, the roughly frequency independent average values for Q and the variation of Q with depth. In the high-Q regions, the lithosphere and the midmantle (200–2000 km), Q is predicted to be frequency dependent. However, the low-Q regions of the earth, where Q is roughly frequency independent, dominate the observations of attenuation.  相似文献   

5.
The basal depth of the outer layer with internal magnetic sources was calculated from magnetic data available within a roughly 500 km wide and 1200 km long area, running from central Germany to southern Italy. The dataset, deriving from different aeromagnetic surveys, is reduced to the reference altitude of 3000 m a.s.l. and a reference year of 1980.0. The adopted method, which transforms the spatial data into the frequency domain, provides a relationship between the two-dimensional spectrum of the magnetic anomalies and the top and centroid depths of the magnetic sources. The magnetic layer bottom depth (MLBD) thus obtained is 29-33 km deep in the stable areas (central Europe Variscan units, Corsica-Sardinia Variscan block) and corresponds to the Moho, having an average temperature of 560 °C. From the Alps to the Apennines, MLBD ranges between 22 and 28 km and is clearly shallower than the Moho. In these units, the wide variation of MLBD appears to be compatible with the presence of shallow magnetised bodies, consisting of lower crustal rocks (Ivrea-Verbano zone), ophiolitic units (Penninic zone and Voltri Massif) and intrasedimentary basic volcanic bodies (Po Basin). An average value of 25 km can be attributed to MLBD, which corresponds to a temperature of 550 °C. In the peri-Tyrrhenian zone and the Ligurian Sea, MLBD is below the Moho, which ranges from 17 to 20 km depth, and it has a temperature matching approximately to the Curie temperature of magnetite (580 °C).  相似文献   

6.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

7.
A horizontal transmitter loop (vertical magnetic dipole) is used for frequency electromagnetic (FEM) soundings. The frequency ranges from approximately 6 Hz to about 4000 Hz. The vertical and radial magnetic field components are measured for 20 frequencies per decade several hundred meters from the transmitter loop. A very small bandwidth is selected for amplification using a reference signal. An Apple computer is used for data acquisition. A computer program for Marquardt inversion optimizes the parameters for the n-layer case: the resistivities and thicknesses of individual beds and a correction factor for the primary magnetic field. Interpretation of each component individually yields practically the same parameters. Examples from the field are given with interpretation; comparison with dc resistivity measurements is provided. The ratio of vertical/radial magnetic field components vs. frequency can be transformed simply into apparent resistivity vs. apparent depth. This can be done in the field to obtain an estimation of the depth of the layer boundaries. FEM results are compared with Schlumberger d.c. sounding obtained at the same site.  相似文献   

8.
A unified method for calculating the Dst index and its components using models of the magnetospheric magnetic field is proposed. The method is consistent with the procedure for calculating Dst from the ground-based magnetometer data. When calculating Dst, the quiet-day magnetic variation is subtracted from the model variation of the magnetic field of magnetospheric sources. The effect of induced currents flowing in the surface layer of the Earth’s crust is taken into account. The dynamics of the magnetospheric current systems during a storm is studied based on an analysis of the Dst components. The magnetic field components for a “quiet” day in June 1998 are studied. The calculations of the Dst components in the parabolid and T01 models demonstrate that the maximum contributions of the ring current and magnetotail current system to the Dst variation are comparable for the magnetic storm of June 25–26, 1998.  相似文献   

9.
For a low-level geomagnetic satellite survey, for which the motion of the satellite converts spatial variation into temporal variation, the limit on accuracy may well be background temporal fluctuations. The sources of the temporal fluctuations are current systems external to the Earth and include currents induced in the Earth due to these sources. The internal sources consist primarily of two components, the main geomagnetic field with sources in the Earth's core and a crustal geomagnetic field.Power spectra of the vertical geomagnetic field internal component that would be observed by a spacecraft in circular orbit at various altitudes, due to satellite motion through the spatially varying geomagnetic field, are compared to power spectra of the natural temporal fluctuations of the geomagnetic field vertical component (natural noise) and to the power spectrum for typical fluxgate magnetometer instrument noise. The natural noise is shown to be greater than this typical instrument noise over the entire frequency range for which useful measurements of the geomagnetic field may be made, for all geomagnetic latitudes and all times. Thus there would be little benefit in reducing the instrument noise below the typical value of 10?4 gamma2 Hz?1 plus a 1/f component of 10 milligamma rms decade?1.For a given satellite altitude, there is a maximum frequency above which the natural noise is greater than the power spectrum of the crustal geomagnetic field vertical component. Below this maximum frequency, the situation is reversed. This maximum frequency depends on geomagnetic latitude (and to a lesser extent on time of day and season of year), being lower in the auroral zone than at lower latitudes. The maximum frequency is also lower at higher satellite altitudes. The maximum frequency determines the spatial resolution obtainable on a magnetic field map. The spatial resolution (for impulses) obtainable at low latitudes for a 100-km satellite altitude (possibly achievable by tethering a small satellite at this altitude to a space vehicle at a higher altitude) is 60 km, while at the auroral zone the obtainable spatial resolution is 100 km. At the higher satellite altitude of 300 km the obtainable spatial resolution is 230 km at low latitudes and 530 km at the auroral zone. At 500-km satellite altitude, the obtainable spatial resolution is 500 km at low latitudes, while maps cannot be made at all for the auroral zone unless the data are selected for “quiet” days.For the lower satellite altitudes, greater spatial resolution can be obtained than at higher altitudes. Furthermore since the crustal geomagnetic field power spectrum is larger at lower altitudes, the relative error due to the natural noise is less than for higher altitudes.  相似文献   

10.
The “Autorité des amenegements des valées des Voltas (AVV)” is establishing new rural settlements in the Volta valleys. First, a survey of available water supplies is performed. Economic aquifers in Precambrian terrains are deep (15–50 m) and usually occur in fractured zones accompanying faults. Such zones can be identified on aerial photographs, but their precise location on the ground is virtually impossible by visual means. Because of the small size of the aquifers, a location error of 5 m can make the difference between a productive well and a dry hole. Traditionally, resistivity profiling has been used as the means of locating the fractured zones in the field. Our studies suggest that the task can be performed faster, cheaper and more accurately by VLF and EM methods. Because of the limited choice of transmitting stations reccivable in Upper Volta, the VLF method is not sufficiently sensitive to detect conductors with a strike between 45° and 105°. The results obtained with a multifrequency, horizontal-loop EM (HLEM) system were satisfactory in all investigated areas. During the 1980 field season, 35 target areas were surveyed. Of the 24 holes drilled so far, 23 are productive. The weathered layer is a source of distinctive HLEM anomalies, which are characteristic of the underlying rocks. Therefore, different interpretational procedures had to be developed for granitic and volcano-sedimentary areas. Despite the high background level of in-phase and quadrature components, which varied with thickness and conductivity of the weathered layer, aquifers could be detected at a depth greater than 30 m. Attempts were made to interpret the HLEM results quantitatively using two models: a three-layer medium and a valley discontinuity. The latter model is more realistic, but more scale modelling will have to be performed to permit development of viable interpretational procedures. Meanwhile, phasor diagrams based on drilling and resistivity sounding data can be used to estimate the aquifer depth.  相似文献   

11.
重、磁勘探具有效率高、成本低、工作范围广等优点,已在地球物理勘探中得到了广泛应用.前人大多在不考虑重、磁勘探观测精度的条件下进行了垂向识别能力的研究,但在考虑重、磁观测精度条件下,重力(重力异常、重力张量)与磁力(磁力异常、磁力三分量、磁力张量)对孤立异常的垂向识别能力如何则需要进行深入的理论研究.本文从重、磁场正演理论出发,以球体(点源模型)和无限延伸水平圆柱体(线源模型)为例,考虑给定观测精度条件下,以重力和磁力幅值大小与观测精度的关系来研究垂向识别能力,从而消除了背景场的影响,提高了研究结果的可靠度.通过研究表明,对于孤立异常,重力张量在浅部一定深度内比重力异常的垂向识别能力强,该深度与重力异常和重力张量观测精度的比值成正比;垂直磁化磁力张量在浅部一定深度内比化极磁力异常的垂向识别能力强,该深度与磁力异常与磁力张量观测精度的比值成正比;磁力在浅部一定深度内比重力的垂向识别能力强,该深度与地质体的磁化强度和剩余密度比值、重力观测精度和磁力观测精度比值成正比.通过重力和磁力垂向识别能力的研究将为重、磁勘探的实际应用起到指导作用.  相似文献   

12.
13.
Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)–SPEAR–St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London–SPEAR–St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9–13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of “thick” and “thin” sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16–20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.  相似文献   

14.
Detailed bathymetric and magnetic data, complemented by nine dredge stations, define the eastern and western limits of a belt of high-amplitude magnetic anomalies associated with the Galapagos hot spot. The hypothesis of “magnetic telechemistry” was tested and locally confirmed. High amplitudes correspond to high remanence, susceptibility, FeOT, TiO2, and presumably titanomagnetite concentration. The average remanence of surface samples in the high-amplitude zone is 0.027 emu/cm3 (range, 0.009–0.085 emu/cm3), about 4 times that of the normal-amplitude zone. Magnetic amplitudes are only 2–2.5 times higher, however. If the greater TiO2/FeOT ratio of high-amplitude zone basalts also characterizes the titanomagnetites, remanence in the high-amplitude zone may fall off more rapidly with depth in the crust as a result of reheating. Alternatively, small pillows of high remanence are more common than larger pillows at the top of the high-amplitude zone crust; FeTi basalt may also be concentrated in the upper part of the crust. Anomaly amplitudes are highest at the ends of the zone, particularly in the east. As asthenosphere crystal slushes presumably flow away from the Galapagos plume, progressive crystal fractionation may enrich residual magmas in FeOT and TiO2. The Galapagos FeTi zone terminates abruptly against transform fractures at both ends, perhaps because subaxial flow is dammed at the transforms. The FeTi-producing crystal slushes have advanced east and west at speeds up to 10 cm/yr since they first appeared at the spreading axis at least 6.6 m.y. B.P. Their progressive advance was connected with the progressive southward jumps of the spreading axis east of the Galapagos hot spot, and northward jumps to the west.  相似文献   

15.
From seismic surveys zero offset reflection times and root-mean-square velocities are obtained. By use of Dix-Krey's formula, the interval velocities can be calculated. If no well velocity survey exists, the interval velocities and T(o) times are the only available information. The suggested way to get a regionally valid velocity distribution is to select N“leading horizons”, where a major change in the velocity parameters occurs and to compute the parameters of the selected velocity depth function (in most cases linear increase with depth) by a special approximation for the interval between two adjacent “leading horizons”. Herewith all reflection horizons within the interval are taken into account.  相似文献   

16.
Horizontal components of extremely low-frequency (ELF) fields in the gyrotropic Earth–ionosphere cavity are expressed through the fields of an isotropic cavity. A linear approximation of the perturbation method with respect to two small parameters is used. These are the impedance z0 of the isotropic ionosphere and the ratio γz2/z1 of the off-diagonal to diagonal elements of the surface impedance matrix of the gyrotropic ionosphere. It is shown that the effect of splitting of the Schumann resonance frequencies caused by the existence of the d.c. geomagnetic field results in an “apparent” angular shift of all ground-based sources of ELF radiation toward the geographic West (“refraction of ELF fields in the gyrotropic Earth–ionosphere cavity”) and excitation of an elliptical magnetic polarization. An analytical relation for the mentioned phenomena is derived. Explicit expressions for polarization characteristics of the electromagnetic ELF noise excited by an arbitrary number of equatorial thunderstorm centers are obtained. Expected values of the “apparent” angular shift for these sources are estimated. Analysis of the estimated magnitudes shows that locations of thunderstorm centers and isolated Q-bursts determined with the use of multi-component ELF measurements should be corrected to exclude the “gyrotropic refraction” effect. Equations to calculate the necessary corrections are presented. The results are generalized to the case of an arbitrary latitudinal location of the sources.  相似文献   

17.
Interpretation of magnetic data can be carried out either in the space or frequency domain. The interpretation in the frequency domain is computationally convenient because convolution becomes multiplication. The frequency domain approach assumes that the magnetic sources distribution has a random and uncorrelated distribution. This approach is modified to include random and fractal distribution of sources on the basis of borehole data. The physical properties of the rocks exhibit scaling behaviour which can be defined as P(k) = Ak, where P(k) is the power spectrum as a function of wave number (k), and A and β are the constant and scaling exponent, respectively. A white noise distribution corresponds to β = 0. The high resolution methods of power spectral estimation e.g. maximum entropy method and multi‐taper method produce smooth spectra. Therefore, estimation of scaling exponents is more reliable. The values of β are found to be related to the lithology and heterogeneities in the crust. The modelling of magnetic data for scaling distribution of sources leads to an improved method of interpreting the magnetic data known as the scaling spectral method. The method has found applicability in estimating the basement depth, Curie depth and filtering of magnetic data.  相似文献   

18.
Geomagnetic fluctuations in the frequency band 2–70 mHz recorded simultaneously at a depth of about 1200 m in the underground Gran Sasso Laboratory (central Italy) and on the earth's surface (approximately along the Laboratory vertical) are compared using multivariate spectral analysis. Experimental problems and analytical techniques adopted for the signal processing are discussed. In particular, a modification of the standard least-squares method for estimating multiple-input transfer functions is proposed. The results show apparent different skin effects for each magnetic field component and a significant coherence between the underground vertical signal and the horizontal signals, suggesting the presence of lateral inhomogeneities in the underground conductivity structure. The results are also consistent with an average resistivity of the intervening medium of the order of 10–20 Ωm and with the presence of a more conductive layer at greater depth.  相似文献   

19.
The ground follow-up of a magnetic and radiometric air survey had to cope with the usual dilemma to check a great number of anomalies within a short time. A limited aggregate of magnetic anomalies, expected to correspond to magnetite quartzites was statistically selected for ground identification by this method: the ratios length/width times amplitude were listed for all coherent contours and the calculation of the standard deviation per unit area resulted in different key-numbers for a new lithological “Salem Unit” and for the charnockitic or gneissic environment. The ground work thus directed and reduced by 85% yielded a substantial potential of iron ore. This was supported by by abundant determinations of the magnetic susceptibilities, confirming the sources of anomalies and revealing the amenabilities of iron ores for the magnetic separation process. The lines of truncation of anomalies were found to represent a system of local and regional faults and shear zones, which segregated the area into different tectonic blocks. These sutures have also provided the ways of intrusion for alkaline and basic magmae in the style of a “Rift” structure, housing several carbonatites and impregnations of metal sulphides. The airborne radiometrics obtained many uranium indications by gamma ray spectrometry. However, they led only to disseminated uranium-silicates, associated with syenites, granites and pegmatites, each emanating a characteristic photon energy spectrum. But in general the radiation of thorium prevails, marking northern Madras as a “Thorium Province”.  相似文献   

20.
The geomagnetic skin-effect is specified by setting three length scales in relation to each other: L1 for the overhead source. L2 for the lateral non-uniformity of the subsurface conductor, L3 for the depth of penetration of a quasi-uniform transient field into this conductor. Relations for the skin-effect of a quasi-uniform source in layered conductors are generalized to include sources of any given geometry by introducing response kernels as functions of frequency and distance. They show that only those non-uniformities of the source which occur within a distance comparable to L3 from the point of observation are significant. The skin-effect of a quasi-uniform source in a laterally non-uniform earth is expressed by linear transfer functions for the surface impedance and the surface ratio of vertical/horizontal magnetic variations. In the case of elongated structures and E-polarisation of the source, a modified apparent resistivity is defined which as a function of depth and distance gives a first orientation about the internal distribution of conductivity. The skin-effect of a non-uniform source in a non-uniform earth is considered for stationary and “running” sources. Recent observations on the sea floor and on islands indicate a deep-seated change of conductivity at the continent—ocean transition, bringing high conductivity close to the surface, a feature which may not prevail, however, over the full width of the ocean. There is increasingly reliable evidence for high conductivities (0.02 to 0.1 micro ?1 m?1) at subcrustal or even at crustal depth beneath certain parts of the continents, in some cases without obvious correlation to geological structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号