共查询到20条相似文献,搜索用时 46 毫秒
1.
M. Akaogi H. Kojitani T. Morita H. Kawaji T. Atake 《Physics and Chemistry of Minerals》2008,35(5):287-297
Low-temperature isobaric heat capacities (C
p
) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the
Physical Properties Measurement System. The measured C
p
of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C
p
, standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change
(4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold.
Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives
an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K.
The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in
situ X-ray diffraction experiments. 相似文献
2.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking
fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The
dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip
systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010),
and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100).
[001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative
differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned. 相似文献
3.
Yuichi Shirako Hiroshi Kojitani Masaki Akaogi Kazunari Yamaura Eiji Takayama-Muromachi 《Physics and Chemistry of Minerals》2009,36(8):455-462
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite. 相似文献
4.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), c = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the P–V data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed. 相似文献
5.
We have used density functional theory to investigate the stability of MgAl2O4 polymorphs under pressure. Our results can reasonably explain the transition sequence of MgAl2O4 polymorphs observed in previous experiments. The spinel phase (stable at ambient conditions) dissociates into periclase and
corundum at 14 GPa. With increasing pressure, a phase change from the two oxides to a calcium-ferrite phase occurs, and finally
transforms to a calcium-titanate phase at 68 GPa. The calcium-titanate phase is stable up to at least 150 GPa, and we did
not observe a stability field for a hexagonal phase or periclase + Rh2O3(II)-type Al2O3. The bulk moduli of the phases calculated in this study are in good agreement with those measured in high-pressure experiments.
Our results differ from those of a previous study using similar methods. We attribute this inconsistency to an incomplete
optimization of a cell shape and ionic positions at high pressures in the previous calculations. 相似文献
6.
Ken Niwa Takehiko Yagi Kenya Ohgushi Sébastien Merkel Nobuyoshi Miyajima Takumi Kikegawa 《Physics and Chemistry of Minerals》2007,34(9):679-686
Lattice preferred orientations (LPO) developed in perovskite and post-perovskite structured CaIrO3 were studied using the radial X-ray diffraction technique combined with a diamond anvil cell. Starting materials of each
phase were deformed from 0.1 MPa to 6 GPa at room temperature. Only weak LPO was formed in the perovskite phase, whereas strong
LPO was formed in the post-perovskite phase with an alignment of the (010) plane perpendicular to the compression axis. The
present result suggests that the (010) is a dominant slip plane in the post-perovskite phase and it is in good agreement with
the crystallographic prediction, dislocation observations via transmission electron microscopy, and a recent result of simple
shear deformation experiment at 1 GPa–1,173 K. However, the present result contrasts markedly from the results on MgGeO3 and (Mg,Fe)SiO3, which suggested that the (100) or (110) is a dominant slip plane with respect to the post-perovskite structure. Therefore
it is difficult to discuss the behavior of the post-perovskite phase in the Earth’s deep interior based on existing data of
MgGeO3, (Mg,Fe)SiO3 and CaIrO3. The possible sources of the differences between MgGeO3, (Mg,Fe)SiO3 and CaIrO3 are discussed. 相似文献
7.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results.
No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From
our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4. 相似文献
8.
M. Akaogi H. Takayama H. Kojitani H. Kawaji T. Atake 《Physics and Chemistry of Minerals》2007,34(3):169-183
The low-temperature isobaric heat capacities (C
p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System.
The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ
transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent
with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition
boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa
and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure
consistent with the 660 km discontinuity, considering the error of the thermodynamic data. 相似文献
9.
It is proved that blue luminescence from benitoite is connected with intrinsic luminescence centers, namely isolated TiO6 octahedra. The metastable level 3T1u is the emitting level at low temperatures with a long decay time of 1.1 ms. At higher temperatures an energy level with higher radiation probability must be involved in the emission process, and this level is situated at 0.06 eV higher than the lowest level. These two levels may be connected with 3T1u level splitting or with closely spaced 3T1u and 3T2u levels. Decay time shortening and thermal quenching are connected with nonradiative decay within the TiO6 luminescence center, while energy migration does not take place at least up to room temperature. 相似文献
10.
The structural changes of CaSnO3, a GdFeO3-type perovskite, have been investigated to 7 GPa in a diamond-anvil cell at room temperature using single-crystal X-ray diffraction. Significant changes are observed in both the octahedral Sn–O bond lengths and tilt angles between the SnO6 octahedra. The octahedral (SnO6) site shows anisotropic compression and consequently the distortion of SnO6 increases with pressure. Increased pressure also results in a decrease of both of the inter-octahedral angles, Sn–O1–Sn and Sn–O2–Sn, indicating that octahedral tilting increases with increasing pressure, chiefly equivalent to rotation of the SnO6 octahedra about the pseudocubic <001>p axis. The distortion in the CaO12 and SnO6 sites, along with the octahedral SnO6 tilting, is attributed to the SnO6 site being less compressible than the CaO12 site.Acknowledgments The authors acknowledge with gratitude the financial support for this work from NSF grant EAR-0105864. Ruby pressure measurements were conducted with the Raman system in the Vibrational Spectroscopy Laboratory in the Department of Geosciences at Virginia Tech with the help of Mr. Charles Farley. 相似文献
11.
Shigeaki Ono 《Physics and Chemistry of Minerals》2007,34(4):215-221
Barium carbonate (BaCO3) was examined in a diamond anvil cell up to a pressure of 73 GPa using an in situ angle-dispersive X-ray diffraction technique. Three new phases of BaCO3 were observed at pressures >10 GPa. From 10 to 24 GPa, BaCO3-IV had a post-aragonite structure with space group Pmmn. There are two molecules in a single unit cell (Z = 2) of the orthorhombic phase, which is same as the high-pressure phases of CaCO3 and SrCO3. The isothermal bulk modulus of BaCO3-IV is K 0 = 84(4) GPa, with V 0 = 129.0(7) Å3 when K 0′ = 4. The c axis of the unit cell parameter is less compressible than the a and b axes. The relative change in volume that accompanies the transformation between BaCO3-III and BaCO3-IV is ~6%. BaCO3-V, which has an orthorhombic symmetry, was synthesized at 50 GPa. As the pressure increases, BaCO3-V is transformed into tetragonal BaCO3-VI. This transformation is likely to be second order, because the diffraction pattern of BaCO3-V is similar to that of BaCO3-VI, and some single peaks in BaCO3-VI become doublets in BaCO3-V. After decompression, the new high-pressure phases transform into BaCO3-II. Our findings resolve a dispute regarding the stable high-pressure phases of BaCO3. 相似文献
12.
High-precision unit-cell volume data of stibnite, collected in the pressure range of 0–10 GPa, was used for fitting a third-order Birch–Murnaghan equation of state. The zero-pressure volume, bulk modulus and its pressure derivative were found to be 487.73(6) Å3, 26.91(14) GPa and 7.9(1), respectively. A series of X-ray intensity data was collected in the same pressure range using a CCD-equipped Bruker diffractometer. The high-pressure structures were all refined to R1(|F0|>4) values of approximately 0.03. Crystal-chemical parameters as polyhedron volume, centroid and eccentricity were calculated for the seven coordinated cation positions using the software IVTON. The cation eccentricity appears to be a very useful tool for quantification of the lone electron pair activity. U2S3, Dy2S3 and Nd2Te3 are all isostructural with stibnite, but the cations in these materials have no lone electron pair. Their eccentricity is much smaller than that of Sb, and close to zero. This confirms that the stibnite structure type alone does not force eccentricity upon the cations involved and it is the lone electron pairs of Sb that generate the eccentricity of cation positions in the structures of stibnite. At increasing pressure the eccentricity of Sb is decreasing. It is therefore reasonable to conclude that the lone electron pair activity is decreasing with increasing pressure. 相似文献
13.
The behaviour of synthetic Mg-ferrite (MgFe2O4) has been investigated at high pressure (in situ high-pressure synchrotron radiation powder diffraction at ESRF) and at high temperature (in situ high-temperature X-ray powder diffraction) conditions. The elastic properties determined by the third-order Birch–Murnaghan equation of state result in K0=181.5(± 1.3) GPa, K=6.32(± 0.14) and K= –0.0638 GPa–1. The symmetry-independent coordinate of oxygen does not show significant sensitivity to pressure, and the structure shrinking is mainly attributable to the shortening of the cell edge (homogeneous strain). The lattice parameter thermal expansion is described by a0+a1*(T–298)+a2/(T–298)2, where a0=9.1(1) 10–6 K–1, a1=4.9(2) 10–9 K–2 and a2= 5.1(5) 10–2 K. The high-temperature cation-ordering reaction which MgFe-spinel undergoes has been interpreted by the ONeill model, whose parameters are = 22.2(± 1.8) kJ mol–1 and =–17.6(± 1.2) kJ mol–1. The elastic and thermal properties measured have then been used to model the phase diagram of MgFe2O4, which shows that the high-pressure transition from spinel to orthorombic CaMn2O4-like structure at T < 1700 K is preceded by a decomposition into MgO and Fe2O3. 相似文献
14.
Aierken Sidike Alifu Sawuti Xiang-Ming Wang Heng-Jiang Zhu S. Kobayashi I. Kusachi N. Yamashita 《Physics and Chemistry of Minerals》2007,34(7):477-484
The photoluminescence and excitation spectra of sodalites from Greenland, Canada and Xinjiang (China) are observed at 300
and 10 K in detail. The features of the emission and excitation spectra of the orange-yellow fluorescence of these sodalites
are independent of the locality. The emission spectra at 300 and 10 K consist of a broad band with a series of peaks and a
maximum peak at 648 and 645.9 nm, respectively. The excitation spectra obtained by monitoring the orange-yellow fluorescence
at 300 and 10 K consist of a main band with a peak at 392 nm. The luminescence efficiency of the heat-treated sodalite from
Xinjiang is about seven times as high as that of untreated natural sodalite. The emission spectrum of the S2
− center in sodalite at 10 K consists of a band with a clearly resolved structure with a series of maxima spaced about 560 cm−1 (20–25 nm) apart. Each narrow band at 10 K shows a fine structure consisting of a small peak due to the stretching vibration
of the isotopic species of 32S34S−, a main peak due to that of the isotopic species of 32S2
− and five peaks due to phonon sidebands of the main peak. 相似文献
15.
The Bader topological analysis has been applied to ab initio computed electron densities of beryl, in order to clarify its
mechanism of compression. Full structural optimization and total energy (E) calculations were performed at different cell volumes (V
c). The pressure at each volume and the equation of state were estimated from the first and second derivatives of the resultant
E(V
c) curve. The total (negative) potential energy of the crystal, sum of both attractive and repulsive electrostatic terms, was
found to systematically decrease (i.e., it moved to more negative values) up to the highest pressure considered (28.4 GPa),
indicating that interelectronic and internuclear repulsions are not the only terms controlling the compressibility, at least in the pressure range investigated. Electronic kinetic energy increases
as the cell volume is reduced, leading to a parallel increase of the total energy. Both structure at equilibrium and compressibility
are therefore due to the balance between the opposing kinetic and potential energy terms. The Bader theory has been used to identify the topological atoms within the structure and to calculate their properties, with particular attention to the forces driving the structural
relaxation at high pressure. On a qualitative basis, the obtained results are expected to be transferable to the discussion
of compressibility of other mineral phases. 相似文献
16.
Using density functional simulations, within the generalized gradient approximation and projector-augmented wave method, we study structures and energetics of CaSiO3 perovskite in the pressure range of the Earths lower mantle (0–150 GPa). At zero Kelvin temperature the cubic
CaSiO3 perovskite structure is unstable in the whole pressure range, at low pressures the orthorhombic (Pnam) structure is preferred. At 14.2 GPa there is a phase transition to the tetragonal (I4/mcm) phase. The CaIrO3-type structure is not stable for CaSiO3. Our results also rule out the possibility of decomposition into oxides.
相似文献
Daniel Y. JungEmail: Phone: +41-44-6323744Fax: +41-44-6321133 |
17.
Planewave pseudopotential calculations of supercell total energies were used as bases for first-principles calculations of
the CaCO3–MgCO3 and CdCO3–MgCO3 phase diagrams. Calculated phase diagrams are in qualitative to semiquantitative agreement with experiment. Two unobserved
phases, Cd3Mg (CO3)4 and CdMg3(CO3)4, are predicted. No new phases are predicted in the CaCO3–MgCO3 system, but a low-lying metastable Ca3Mg(CO3)4 state, analogous to the Cd3Mg(CO3)4 phase is predicted. All of the predicted lowest-lying metastable states, except for huntite CaMg3(CO3)4, have dolomite-related structures, i.e. they are layer structures in which A
m
B
n
cation layers lie perpendicular to the rhombohedral [111] vector.
Received: 6 May 2002 / Accepted: 23 October 2002
Acknowledgements This work was partially supported by NSF contract DMR-0080766 and NIST. 相似文献
18.
G. Diego Gatta Nicola Rotiroti Martin Fisch Milen Kadiyski Thomas Armbruster 《Physics and Chemistry of Minerals》2008,35(9):521-533
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (a = 16.753(4), b = 13.797(3) and c = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at P ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes. 相似文献
19.
Lihua Zhang Changchun Song Xunhua Zheng Dexuan Wang Yiyong Wang 《Environmental Geology》2007,52(3):529-539
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen.
These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem
respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and
2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no
significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m
−2 h
−1, respectively, in 2004, and 898.59 and 2,154.17 mg m
−2 h
−1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m
−2 h
−1 and 0.72 and 1.88 mg m
−2 h
−1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale
of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that
for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale. 相似文献
20.
Lars A. Olsen Tonci Balic-Zunic Emil Makovicky Angela Ullrich Ronald Miletich 《Physics and Chemistry of Minerals》2007,34(7):467-475
A single-crystal sample of galenobismutite was subjected to hydrostatic pressures in the range of 0.0001 and 9 GPa at room temperature using the diamond-anvil cell technique. A series of X-ray diffraction intensities were collected at ten distinct pressures using a CCD equipped 4-circle diffractometer. The crystal structure was refined to R1(|F0| > 4σ) values of approximately 0.05 at all pressures. By fitting a third-order Birch-Murnaghan equation of state to the unit-cell volumes V 0 = 700.6(2) Å3, K 0 = 43.9(7) GPa and dK/dP = 6.9(3) could be determined for the lattice compression. Both types of cations in galenobismutite have stereochemically active lone electron pairs, which distort the cation polyhedra at room pressure. The cation eccentricities decrease at higher pressure but are still pronounced at 9 GPa. Galenobismutite is isotypic with CaFe2O4 (CF) but moves away from the idealised CF-type structure during compression. Instead of the two octahedral cation sites and one bi-capped trigonal-prismatic site, PbBi2S4 attains a new high-pressure structure characterised by one octahedral site and two mono-capped trigonal-prismatic sites. Analyses of the crystal structure at high pressure confirm the preference of Bi for the octahedral site and the smaller one of the two trigonal-prismatic sites. 相似文献